Subin Jose, Biswadip Gharai , Pamaraju Venkata Narasimha Rao

  • Atmospheric Chemistry & Processes Studies Division, Atmospheric and Climate Sciences Group, National Remote Sensing Center, Hyderabad, India

Received: April 18, 2016
Revised: August 9, 2016
Accepted: September 1, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2016.04.0154  

  • Download: PDF


Cite this article:
Jose, S., Gharai, B. and Rao, P.V.N. (2017). Cross-Sectional View of Atmospheric Aerosols over an Urban Location in Central India. Aerosol Air Qual. Res. 17: 761-775. https://doi.org/10.4209/aaqr.2016.04.0154


HIGHLIGHTS

  • Regional atmosphere is dominated by fine mode aerosols.
  • Surface BC shows winter maximum and minimum in pre-monsoon.
  • Elevated dust aerosols are observed in pre-monsoon.
  • A decline in SW flux at TOA is observed (0.66 Wm–2 yr–1).

 

ABSTRACT


Surface, column and vertically resolved variations of physical and optical properties of atmospheric aerosol over Hyderabad, a tropical urban location in central India are explored on the basis of ground based and satellite retrieved data. Annual mean aerosol optical depth (τ) observed with Microtops sun-photometer is 0.61 ± 0.07 and seasonally it varied from 0.71 ± 0.06 in pre-monsoon to 0.55 ± 0.05 in winter. Aerosol types are categorized based on Ångström exponent (α) and τ relations; revealed that the study region is dominated by mixed type (MT) aerosol followed by urban/industrial aerosols under high τ (HUI) category. A consistent diurnal variation of black carbon (BC) is observed irrespective of seasonal variation with annual BC mass concentration is found to be 9.7 ± 1.9 µg m–3. During Telangana Survey day, which was the least pollutant day showed a reduction of 75% BC concentration during day time in comparison to five years average values, indicating the influence of anthropogenic effect over Hyderabad. Vertical information’s on aerosol are analyzed using Cloud Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) and ground based Lidar (LAMP) data. LAMP data analysis shows a significant elevated aerosol layer up to 4 km during pre-monsoon while aerosols are confined below 3 km during post-monsoon and winter. Long term CALIPSO observations revealed that during post-monsoon to winter, the study area is dominated (~60%) by ‘urban’ aerosol; while during pre-monsoon period ~75% of the aerosol type belongs to ‘dusty mix’ category. A decline in short wave flux at the top of the atmosphere (0.66 Wm–2 yr–1) is observed, as revealed by long term Clouds and Earths Radiant Energy System (CERES) data analysis with higher decline rate observed in winter (1 Wm–2 yr–1) followed by pre-monsoon (0.8 Wm–2 yr–1).


Keywords: Aerosol optical depth; Black carbon; Aerosol backscatter coefficient; SW flux at TOA


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.