Yi Yang

  • School of Energy Science and Engineering, Central South University, Changsha 410083, China

Received: April 5, 2016
Revised: June 29, 2016
Accepted: June 29, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2016.02.0058  

  • Download: PDF


Cite this article:
Yang, Y (2017). A Numerical Study of the Particle Penetration Coefficient of Multibended Building Crack. Aerosol Air Qual. Res. 17: 290-301. https://doi.org/10.4209/aaqr.2016.02.0058


HIGHLIGHTS

  • The fraction of vertical wall area has little effect on fine particle penetration.
  • Increasing fraction of vertical wall area will increase large particle penetration.
  • More particles can travel through L-shaped crack with increasing crack height.
  • Particle penetration is same for equal length multibended crack.

 

ABSTRACT


In this paper, the particle penetration coefficient of a multibended building crack was numerically investigated in detail. A steady laminar flow field was obtained by solving continuity and Navier–Stokes equations. The Eulerian method considering gravitational sedimentation and Brownian diffusion was employed to describe particle behavior and was validated using the experimental data. This study evaluated the particle penetration coefficient of straight-through, L-shaped, double-bend, and four-bend cracks by considering the following impact factors: the ratio of the vertical–horizontal wall area, crack height, and inclined wall angle. The results show that the ratio of the vertical–horizontal wall area is a key parameter for evaluating the particle deposition rate. When particles travel through the L-shaped crack, the penetration coefficient of fine particles is the same for cracks with different ratio of the vertical-horizontal wall area, and the penetration coefficient of large particles increases with increasing the ratio of the vertical-horizontal wall area. The particle diameter band with a penetration coefficient higher than 80% extends with increasing crack height. If L-shaped cracks have constant ratio of the vertical-horizontal wall area, then the particle has equal penetration coefficients when traveling through L-shaped cracks inclined at different angles. Particles traveling through multibended cracks with equal length, height, and ratio of the vertical-horizontal wall area exhibit the same trend for penetration coefficients.


Keywords: L-shaped crack; Double-bends crack; Four-bends crack; Diffusion deposition; Gravitational settling deposition


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.