Cite this article: Babar, Z.B., Park, J.H., Kang, J. and Lim, H.J. (2016). Characterization of a Smog Chamber for Studying Formation and Physicochemical Properties of Secondary Organic Aerosol.
Aerosol Air Qual. Res.
16: 3102-3113. https://doi.org/10.4209/aaqr.2015.10.0580
HIGHLIGHTS
A new indoor smog chamber with ~7 m3 FEP reactor at KNU is developed.
KNU smog chamber exhibits reliable temperature and relative humidity control.
NO2 photolysis and wall loss rates of gas and particle are in reasonable range.
This facility can be effectively used for SOA formation and chemistry.
ABSTRACT
An indoor smog chamber facility has been built for carrying out secondary organic aerosol (SOA) formation and for studying physicochemical properties of SOA. This facility comprises of ~7 m3 FEP Teflon reactor placed in temperature controlled room coupled with instruments for gas and particle phase data. Detailed characterization experiments have been presented describing control of reactor temperature, relative humidity (RH), effective mixing time, wall loss rates of gases and particles, light source, and air purification. This chamber showed a wide range of temperature control with acceptable precision (i.e., 18–33 ± 0.5°C). The gas wall loss rates for NO, NO2, and O3 were found to be 3.78 × 10–4 min–1, 4.48 × 10–5 min–1, and 6.47 × 10–5 min–1, respectively. NO2 photolysis rate constant was 0.17 min–1. Particle wall loss constant was found to be 3.96 × 10–3 min–1 at Dp = 100 nm. SOA yields of dark α-pinene ozonolysis ranged from 0.025 to 0.378 for α-pinene concentrations from 10 ppb to 100 ppb.
Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.