Nishi Srivastava 1, S.K. Satheesh2,3

  • 1 Birla Institute of Technology, Mesra, Ranchi-835215, India
  • 2 Centre for Atmospheric and Oceanic Science, Indian Institute of Science, Bangalore-560012, India
  • 3 Divecha Centre for Climate Change, Indian Institute of Science, Bangalore-560012, India

Received: July 15, 2015
Revised: July 29, 2016
Accepted: July 29, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2015.07.0462  

  • Download: PDF


Cite this article:
Srivastava, N. and Satheesh, S. (2016). Modulation in Direct Radiative Forcing Caused by Wind Generated Sea-Salt Aerosols. Aerosol Air Qual. Res. 16: 2869-2883. https://doi.org/10.4209/aaqr.2015.07.0462


HIGHLIGHTS

  • Developed a robust τ-wind relation by exploring a large spatial and temporal span.
  • Studied latitudinal variation of τ0 and b for spatial heterogeneity in sea-salt.
  • DRF has been estimated in both shortwave and long-wave region.
  • Longwave forcing nullifies the shortwave forcing partially due to opposite signs.
  • This indicates notable contribution of coarse sea-salt aerosol in LWF over AS.

 

ABSTRACT


Sea-salt aerosols, prominent natural aerosols over the ocean, play a vital role in direct and indirect radiative forcing. Since surface winds are the prime cause of sea-salt generation, we have developed an empirical relationship between aerosol optical depth (AOD) and sea-surface winds over the study region (60–70°E; 40°S–20°N). The latitudinal variation of background aerosol optical depth (τ0) and the wind index (b) are estimated as they are essential inputs for the estimation of the spatial variation of sea-salt aerosols and are used over the Arabian Sea (AS) to generate spatial heterogeneity of sea-salt aerosols. The latitudinal variation of τ0 and b show a nearly exponential and linear increase, respectively, as we moved towards the north. We used an empirical-cum-model approach to construct an aerosol system to reproduce the observed AOD and aerosol optical properties. Utilizing this information as input to a radiative transfer model, we worked out direct radiative forcing (DRF) over the study region in the short wave (0.2–4 µm) and long wave (8–14 µm) region at the surface, top of the atmosphere (TOA) and in the atmosphere. Short wave cooling at the surface, TOA and heating in the atmosphere are estimated as 40 W m–2, 32 W m–2 and 8 W m–2, respectively. Long wave heating due to the sea-salt aerosols estimated at the surface, TOA and in the atmosphere is about 9 W m–2, 6 W m–2 and 15 W m–2 respectively. Long wave forcing (LWF) partly counterbalances the effect of short wave forcing (SWF) and the cooling at the surface and at TOA. The highest value of such an offset at the surface was observed over the AS (~23%) and that at TOA was ~19%, obviously at high wind conditions. This implies that over the AS sea-salt aerosols (in coarse mode) contribute significantly to LWF compared to other adjacent oceanic regions.


Keywords: Sea salt aerosol; Radiative forcing; Aerosol optical depth


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.