Pei-Hsin Chou 1, Chen-Hua Lee1, Fung-Chi Ko2, You-Ji Lin1, Masanobu Kawanishi3, Takashi Yagi3, I-Chia Li1

  • 1 Department of Environmental Engineering, National Cheng Kung University, 1, University Road, East District, Tainan, 70101, Taiwan
  • 2 National Museum of Marine Biology and Aquarium, Institute of Marine Biology, National Dong Hwa University, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
  • 3 Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570, Japan

Received: June 11, 2015
Revised: June 20, 2015
Accepted: June 30, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.06.0404  


Cite this article:
Chou, P.H., Lee, C.H., Ko, F.C., Lin, Y.J., Kawanishi, M., Yagi, T. and Li, I.C. (2015). Detection of Hormone-Like and Genotoxic Activities in Indoor Dust from Taiwan Using a Battery of in Vitro Bioassays. Aerosol Air Qual. Res. 15: 1412-1421. https://doi.org/10.4209/aaqr.2015.06.0404


HIGHLIGHTS

  • Aryl hydrocarbon receptor agonist activities were detected in Taiwan’s dust samples.
  • Dust samples also exhibited antiandrogenic and antithyroid hormonal activities.
  • Genotoxic potencies were mainly observed in indoor dust samples.
  • Polycyclic aromatic hydrocarbons were minor contributors to AhR agonist activities.
  • Novel AhR agonist contaminants were found in indoor dust after HPLC fractionation.

 

ABSTRACT


Indoor dust serves as a potential sink for various synthetic chemicals used in our daily lives, while exposure to these anthropogenic contaminants via dust contact, ingestion, or inhalation may pose potential threats to human health. In this study, in vitro biological assays were used to investigate the endocrine disrupting activity and genotoxicity in dust samples collected from a university located in southern Taiwan. Contents of polycyclic aromatic hydrocarbons (PAHs) in indoor dust were also analysed by gas chromatography mass spectrometry. Our results showed that significant aryl hydrocarbon receptor (AhR) agonist, antiandrogenic, antithyroid hormonal, and genotoxic activities were found in dust samples. In particular, high AhR agonist activities were found in indoor dust collected from computer room and laboratory (16112 and 9686 ng benzo(a)pyrene equivalent/g dust dry weight), whereas AhR agonistic PAHs were responsible for only a small percentage of the bioassay-derived activities. Higher antiandrogenic and genotoxic activities were found in indoor dust from office and classroom, respectively, suggesting that contaminants varied in different indoor dust samples. After fractionating by high performance liquid chromatography, AhR agonist activities were detected in several fractions of indoor dust from computer room and laboratory, indicating the presence of unknown AhR agonist contaminants in these indoor dust samples. Further isolation and identification of novel AhR agonistic and antiandrogenic contaminants is necessary to protect the environment and human health.


Keywords: Indoor dust; Endocrine disrupting activity; Aryl hydrocarbon receptor; Polycyclic aromatic hydrocarbons; Bioassays


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2021 Impact Factor: 4.53
5-Year Impact Factor: 3.668

The Future Environment and Role of Multiple Air Pollutants

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.