Patrick Sheridan 1, Elisabeth Andrews1,2, Lauren Schmeisser1,2, Brian Vasel1, John Ogren1

  • 1 Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USA
  • 2 Cooperative Institute for Research in Environmental Sciences, Boulder, CO 80309, USA

Received: May 22, 2015
Revised: August 31, 2015
Accepted: September 8, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.05.0358  

  • Download: PDF


Cite this article:
Sheridan, P., Andrews, E., Schmeisser, L., Vasel, B. and Ogren, J. (2016). Aerosol Measurements at South Pole: Climatology and Impact of Local Contamination. Aerosol Air Qual. Res. 16: 855-872. https://doi.org/10.4209/aaqr.2015.05.0358


HIGHLIGHTS

  • Climatologies of wind and aerosol measurements at SPO through 2014 are presented.
  • Winds at South Pole blow from the Clean Air Sector an average of 88% of the time.
  • Most aerosol measurements at SPO do not show statistically-significant trends.
  • Contamination of the Clean Air Sector was slightly higher during high-activity years.
  • A clear example of local aerosol contamination of the Clean Air Sector is discussed.

 

ABSTRACT


The Atmospheric Research Observatory (ARO), part of the National Science Foundation’s (NSF’s) Amundsen-Scott South Pole Station, is located at one of the cleanest and most remote sites on earth.  NOAA has been making atmospheric baseline measurements at South Pole since the mid-1970's. The pristine conditions and high elevation make the South Pole a desirable location for many types of research projects and since the early 2000's there have been multiple construction projects to accommodate both a major station renovation and additional research activities and their personnel. The larger population and increased human activity at the station, located in such close proximity to the global baseline measurements conducted at the ARO, calls into question the potential effects of local contamination of the long-term background measurements. In this work, the long-term wind and aerosol climatologies were updated and analyzed for trends. Winds blow toward the ARO from the Clean Air Sector ~88% of the time and while there is some year-to-year variability in this number, the long-term wind speed and direction measurements at South Pole have not changed appreciably in the last 35 years. Several human activity markers including station population, aircraft flights and fuel usage were used as surrogates for local aerosol emissions; peak human activity (and thus likely local emissions) occurred in the 2006 and 2007 austral summer seasons. The long-term aerosol measurements at ARO do not peak during these seasons, suggesting that the quality control procedures in place to identify and exclude continuous sources of local contamination are working and that the NSF’s sector management plan for the Clean Air Sector is effective. No significant trends over time were observed in particle number concentration, aerosol light scattering coefficient, or any aerosol parameter except scattering Ångström exponent, which showed a drop of ~0.02 yr–1 over the 36-year record. The effect of discrete local contamination events in the Clean Air Sector is discussed using one well-documented example.


Keywords: Aerosol monitoring; Clean Air Sector; Wind sector screening


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.