Christelle Barbet1,2, Laurent Deguillaume1,2, Nadine Chaumerliac 1,2, Maud Leriche3,4, Evelyn Freney1,2, Aurélie Colomb1,2, Karine Sellegri1,2, Luc Patryl5, Patrick Armand5

  • 1 Université Clermont Auvergne, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, 4 av. Blaise Pascal TSA 60026 CS 60026 63178 Aubière Cedex, France
  • 2 CNRS, LaMP/OPGC, UMR6016, 4 av. Blaise Pascal TSA 60026 CS 60026 63178 Aubière Cedex, France
  • 3 Université de Toulouse, UPS, Laboratoire d’Aérologie, 14 avenue Edouard Belin, 31400 Toulouse, France
  • 4 CNRS, LA, UMR5560, 31400 Toulouse, France
  • 5 CEA, DAM, DIF, F-91297 Arpajon, France

Received: May 15, 2015
Revised: September 25, 2015
Accepted: November 5, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.05.0342 

  • Download: PDF


Cite this article:
Barbet, C., Deguillaume, L., Chaumerliac, N., Leriche, M., Freney, E., Colomb, A., Sellegri, K., Patryl, L. and Armand, P. (2016). Evaluation of Aerosol Chemical Composition Simulations by the WRF-Chem Model at the Puy de Dôme Station (France). Aerosol Air Qual. Res. 16: 909-917. https://doi.org/10.4209/aaqr.2015.05.0342


HIGHLIGHTS

  • Unexpected high concentrations of OA in summer 2010 at the puy de Dôme station.
  • Capability of WRF-Chem model vs. REMOTE model to retrieve high SOA formation episode over a mountain site.
  • Diurnal cycle of SOA formation sensitive to oxidation processes of organic compounds.

 

ABSTRACT


The high altitude Puy de Dôme (PUY) research station, located at 1465 m a.s.l. in central France, hosts many instruments allowing continuous measurements and intensive campaigns to measure meteorological parameters, gas-phase species, aerosol and cloud properties. Aerosol chemical composition measurements provided by a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS) are used to evaluate the WRF-Chem model and more precisely its ability to simulate organic aerosol (OA) for a particular event in summer 2010. Using the Volatility Basis Set approach (VBS), dedicated to the formation of secondary organic aerosol (SOA), the WRF-Chem model strongly underestimates the high concentration levels of OA observed at the PUY station: 12.5 µg m–3 were observed and only 2.6 µg m–3 were simulated. By means of several measurements of gas-phase volatile organic compounds (VOCs), the robustness of both emissions and SOA formation processes in the WRF-Chem model was tested. The underestimation of the OA mass concentration appears to be mainly due to a misrepresentation of the oxidation rate of the organic condensable vapours (OCVs) and the SOA yields of both anthropogenic and biogenic VOCs in the VBS parameterization.


Keywords: Organic aerosol; Chemistry/Transport model; Emission inventory; Secondary Organic Aerosol (SOA) formation


Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank

Enter your email below to receive latest published articles in your field.