Kai Sun, Hongnian Liu , Aijun Ding, Xueyuan Wang

  • School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China

Received: May 18, 2015
Revised: August 24, 2015
Accepted: October 4, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.04.0248  

  • Download: PDF

Cite this article:
Sun, K., Liu, H., Ding, A. and Wang, X. (2016). WRF-Chem Simulation of a Severe Haze Episode in the Yangtze River Delta, China. Aerosol Air Qual. Res. 16: 1268-1283. https://doi.org/10.4209/aaqr.2015.04.0248


  • A severe haze episode was analyzed by model results combined with observation data.
  • Relative contributions of horizontal and vertical dispersion ability are discussed.
  • Chemical characteristics of the central and northwest part of the YRD were compared.
  • The PM2.5 composition of YRD differed from that of the Beijing-Tianjin-Hebei region.
  • Nitrate was the main constituent of PM2.5 in the central YRD.



WRF-Chem was used to study a severe haze episode that occurred over the Yangtze River Delta (YRD), China, in November 2013. This episode was characterized by a high PM2.5 concentration (> 400 µg m–3), high relative humidity (> 80%) and low visibility (< 900 m). Regional average results showed that PM2.5 concentration peaks corresponded closely with a low wind speed and a low planetary boundary layer (PBL) height, and the maximal PM2.5/PM10 ratio of 0.89 indicated fine particle dominance. Horizontal dispersion analysis showed that the ventilation coefficient (VC) dropped from above 3000 m2 s–1 (clean days) to below 1500 m2 s–1 (polluted days), and the average VC for December for the period of 2008–2012 was 2119 m2 s–1; horizontal transport flux showed central and northwest YRD mainly outputted pollutants in this episode. Vertically, because of the influence of the PBL and nocturnal inversion, the region of high PM2.5 concentration (> 125 µg m–3) extended to 1 km height during daytime, but was confined to below 200 m at night. However, near-surface inversion was observed even on clean days. Therefore, we concluded that poor horizontal dispersion ability played a dominant role in the haze formation, and weak vertical dispersion ability, together with high relative humidity, aggravated the pollution. Chemical analysis showed that, compared with PM2.5 in the northwest part of the YRD, PM2.5 in the central YRD contained a higher proportion of nitrate and a lower proportion of black carbon and organic carbon. The observed NO3/SO42– ratio was 1.54 for this episode, and the monthly average dropped to 1.40 for December 2013. We concluded that mobile sources contributed considerably to the episode. Moreover, in winter, higher NO3/SO42– and nitrate being the main component (29%) in PM2.5 made central YRD different from the Beijing-Tianjin-Hebei region.

Keywords: Haze; Yangtze River Delta; Dispersion ability; PM2.5 chemical characteristics; WRF-Chem

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.