Mei-Hsia Chen1, Chung-Shin Yuan 1, Lin-Chi Wang 2

  • 1 Institute of Environmental Engineering, National Sun Yat-Sen University, No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan
  • 2 Department of Civil Engineering and Engineering Informatics, Cheng Shiu University, 840, Chengching Road, Kaohsiung 833, Taiwan

Received: March 13, 2015
Revised: April 21, 2015
Accepted: April 22, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.03.0160  

  • Download: PDF


Cite this article:
Chen, M.H., Yuan, C.S. and Wang, L.C. (2015). A Feasible Approach to Quantify Fugitive VOCs from Petrochemical Processes by Integrating Open-Path Fourier Transform Infrared Spectrometry Measurements and Industrial Source Complex (ISC) Dispersion Model. Aerosol Air Qual. Res. 15: 1110-1117. https://doi.org/10.4209/aaqr.2015.03.0160


HIGHLIGHTS

  • A feasible approach to quantify the fugitive VOC emissions was developed.
  • OPFTIR and ISCST3 are integrated to predict the amount of fugitive VOC emissions.
  • Wind speeds and directions are the most important factors in the dispersion modeling.

 

ABSTRACT


Fugitive emissions are one of the largest sources of volatile organic compounds (VOCs) from petrochemical and chemical plants. However, how to quantify the total fugitive VOC emissions from numerous and mostly inaccessible sources is a time consuming and costly task. This study presents a feasible approach to quantify the fugitive VOC emissions by integrating OPFTIR measurements and the well-developed Industrial Source Complex Short Term Model (ISCST3). A mobile OPFTIR system was set up for 190 hours in the downwind location of a 1,3-butadiene manufacturing process, which has unidentified fugitive sources and should be responsible for the elevated atmospheric 1,3-butadiene concentrations. Wind speeds and directions were found to be the most important factors in the dispersion of the emissions. Therefore, when using trial and error to predict the fugitive 1,3-butadiene emission rates, we divided the field measurement data based on the wind directions and excluded that obtained during lower wind speeds. Then the correlation coefficients between the field data (from the mobile OPFTIR system) and the modeling data (from the ISCST3) were found to be up to 0.529, and the slope of the correlation equation was close to unity. Therefore, integrating the OPFTIR measurement and ISCST3 is a feasible approach to predict the amount of fugitive VOC emissions.


Keywords: VOCs; Fugitive emissions; OPFTIR; ISCST3


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

The Future Environment and Role of Multiple Air Pollutants

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.