Yi Wang 1, Yang Yang1, Yan Zou1, Yingxue Cao1, Xiaofen Ren2, Yanbin Li1

  • 1 Xi’an University of Architecture and Technology, Xi’an, 710055, China
  • 2 Heibei University of Engineering, Hebei, 056038, China

Received: March 28, 2015
Revised: June 25, 2015
Accepted: August 4, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.03.0191  

  • Download: PDF

Cite this article:
Wang, Y., Yang, Y., Zou, Y., Cao, Y., Ren, X. and Li, Y. (2016). Evaporation and Movement of Fine Water Droplets Influenced by Initial Diameter and Relative Humidity. Aerosol Air Qual. Res. 16: 301-313. https://doi.org/10.4209/aaqr.2015.03.0191


  • Droplets with indentical initial diameter form a nonuniform diameter distribution.
  • Nonuniform diameter and airflow distributions cause motion differences of droplets.
  • Ventilation should take movement difference of droplets into consideration.
  • The ambient relative humidity could be neglected in ventilation on droplets control.



Droplets generated in industrial buildings may do harm to the workers, the construction and the environment. Ventilation is often used to control this kind of air-borne contaminants. In order to provide a basis and reference for the efficient ventilation on droplets control, a numerical simulation method is adopted to reveal the evaporation and movement of fine water droplet populations released from a tank in industrial buildings. The variations of diameter and velocity of water droplets with identical initial diameter and velocity were studied. The results showed the evaporation and movement of the droplet populations presented obviously nonuniform distributions, due to vapor concentration and velocity distribution of the air around the droplets. When the droplets were closer to the centerline of the tank, they showed a lower evaporation rate, a larger velocity and a bigger velocity difference between droplets and its surrounding air. The effects of initial diameter and the relative humidity of the ambient air on droplet evaporation and movement were discussed. Compared to the relative humidity of the ambient air, the initial diameter had a more significant effect on the droplet evaporation and movement. The effects of the initial diameter variation (1 µm–50 µm) on the evaporation time variation and the terminal height variation were almost 17 times and 10 times larger than the effects by the relative humidity variation of the ambient air (20%–80%), respectively.

Keywords: Aerosol; Droplet evaporation; Droplet movement; Numerical simulation; Lagrangian-Eulerian approach

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.