Jen-Hsuan Cheng, Ming-Jui Hsieh, Kang-Shin Chen

  • Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan

Received: December 28, 2016
Revised: December 28, 2016
Accepted: December 28, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2015.02.0114  

  • Download: PDF


Cite this article:
Cheng, J.H., Hsieh, M.J. and Chen, K.S. (2016). Characteristics and Source Apportionment of Ambient Volatile Organic Compounds in a Science Park in Central Taiwan. Aerosol Air Qual. Res. 16: 221-229. https://doi.org/10.4209/aaqr.2015.02.0114


HIGHLIGHTS

  • Three dominant VOC species were 2-butanone, toluene and acetone.
  • Two abundant hydrocarbon groups were ketones and aromatic compounds.
  • Primary emission sources were associated with the semiconductor industry and traffic.

 

ABSTRACT


Air samples were collected concurrently at four sites using stainless steel canisters in a science park in central Taiwan. The airborne volatile organic compounds (VOCs) were then analyzed using a gas chromatograph and a mass spectrometer (GC/MS). Eighteen volatile organic compounds (C1–C8) in six hydrocarbon groups were identified. Measurements reveal that the three dominant species were 2-butanone (8.60 ± 0.98 ppbv), toluene (6.13 ± 1.67 ppbv), and acetone (6.03 ± 2.79 ppbv), while most other species were present at a concentration of below 1.00 ppbv. On average, the most abundant hydrocarbon group was ketones (56.95%), followed by aromatic compounds (27.75%), alkanes (8.33%), fluoroalkanes (3.40%), chloroalkanes (2.47%), and nitrile compounds (1.10%). Principal component analysis (PCA) identified two components PC1 and PC2. Ten species in PC1 and eight species in PC2 had loadings of greater than 0.8, suggesting that the emission sources of PC1 were related to high-tech industries and traffic, and those of PC2 were related to fugitive emissions of organic solvents and refrigerants.


Keywords: Volatile organic compounds; Hazardous air pollutants; Source apportionment; PCA; Science park


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.