Tareq Hussein 1,2, Lubna Dada2, Hassan Juwhari1, Dina Faouri1

  • 1 The University of Jordan, Department of Physics, Amman 11942, Jordan
  • 2 University of Helsinki, Department of Physics, P. O. Box 48, FI-00014 UHEL, Helsinki, Finland

Received: February 15, 2015
Revised: April 23, 2015
Accepted: May 22, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2015.01.0039  

Cite this article:
Hussein, T., Dada, L., Juwhari, H. and Faouri, D. (2015). Characterization, Fate, and Re-Suspension of Aerosol Particles (0.3–10 µm): The Effects of Occupancy and Carpet Use. Aerosol Air Qual. Res. 15: 2367-2377. https://doi.org/10.4209/aaqr.2015.01.0039


  • Unoccupied and uncarpeted offices have less coarse particle resuspension.
  • Coarse particles have a clear daily pattern on workdays inside occupied offices.
  • Naturally ventilated offices on the same floor exhibit similar ventilation patterns.



In this study we present the particle number size distribution (diameter 0.3–10 µm with 1-minute time resolution) inside four offices (naturally ventilated) inside two university buildings. Each office had a typical environment in terms of occupancy and furniture. We focused on the differences between workdays and weekends in terms of particle number (PN) and particle mass (PM, assuming spherical particles with unit density) concentrations. Moreover, we illustrated the effect of workers’ activity (occupancy, smoking, etc.). We also applied a simple indoor aerosol model to estimate the fate (gravitational settling and exfiltration) and source strength of aerosol particles within the measured particle size range. During workdays, the highest measured 24-hour average PM10–1 in the occupied office was 41.5 µg m–3 (PN10–1 = 2.2 cm–3) compared to 9.0 µg m–3 (PN10–1 = 1.2 cm–3) in the unoccupied offices. The ventilation rate of the offices that were opposite to each other was about 0.15 h–1 whereas it was 0.28–0.38 h–1 for the other offices, which were a bit distant from each other. The gravitational settling analysis suggested that a suitable particle density (ρp) could be ~1.7 g cm–3 with a shape factor χ ~1.57, which is similar to mineral dust particles. The gravitational settling rate of particles around 2 µm in diameter was about 0.3 h–1. The source strength of indoor dust particles was higher in the occupied and carpeted offices (re-suspension emission rate as high as 235 µg m–3 h–1) in comparison to unoccupied and uncarpeted offices (75 µg m–3 h–1). This study provided us with an insight about the effect of occupancy and carpet use on the dynamic behavior (fate and re-suspension) of dust particles inside university office buildings located in semi-arid regions.

Keywords: Indoor air quality; Particulate matter; Particle number size distribution; Aerodynamic diameter; Gravitational settling

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

81st percentile
Powered by

2020 Impact Factor: 3.063
5-Year Impact Factor: 2.857

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.