1 Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 02 Prague 6, Czech Republic
2 Department of Physical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague, 128 43, Czech Republic
Cite this article: Skrabalova, L., Zikova, N. and Zdimal, V. (2015). Shrinkage of Newly Formed Particles in an Urban Environment.
Aerosol Air Qual. Res.
15: 1313-1324. https://doi.org/10.4209/aaqr.2015.01.0015
HIGHLIGHTS
Particle shrinkage events following new particle formation are presented.
Particle shrinkage caused by evaporation of volatile and semi-volatile species.
Effects of meteorological conditions and atmospheric processes are discussed.
ABSTRACT
New particle formation (NPF) significantly influences the number concentrations and size distributions of an atmospheric aerosol and is often followed by the rapid growth of the newly formed particles. Recently a reversal process leading to particle shrinkage was reported and was found to occur under specific atmospheric conditions, which are unfavourable for the growth of nucleated particles. In this study we present an analysis of particle shrinkage events following prior NPF at an urban background station in Prague, Czech Republic. The study is based on two-year measurements of particle number size distributions using Scanning Mobility Particle Size (SMPS). A total of 22 shrinkage events were identified and the vast majority of the events was observed in the spring and summer seasons. The determined shrinkage rates span the range from –2.5 to –12.5 nm/h. During the most intensive events, the grown particles shrank back to the smallest measurable size of 10 nm. The particle shrinkage was attributed to the evaporation of previously condensed volatile and semi-volatile species from the particulate phase to the gas phase. When analysing the dependence on meteorological conditions, the particle shrinkage was found to occur under peak global radiance intensity, which was gradually decreasing, or under a sharp drop of global radiance intensity. The shrinkage events were also related to high ambient temperature and low relative humidity. The occurrence of atmospheric mixing was found to promote particle shrinkage very effectively, because the decrease of vapour concentration due to changing atmospheric conditions is more rapid than the decrease of vapour concentration caused by lower photochemical activity due to a drop in solar radiation intensity.
Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.