

Secondary PM_{2.5} in Zhengzhou, China: Chemical Species Based on Three Years of Observations

Jia Wang, Xiao Li, Wenkai Zhang, Nan Jiang, Ruiqin Zhang^{*}, Xiaoyan Tang

Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

ABSTRACT

The chemical properties and secondary components of $PM_{2.5}$ were investigated in the city of Zhengzhou, China. Watersoluble ionic species (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, NO₃⁻ and SO₄²⁻) contents, carbonaceous components (organic carbon (OC) and elemental carbon (EC)) in PM_{2.5} were measured for three years. The EC tracer method was used to estimate the secondary organic carbon (SOC) content, and the Interagency Monitoring of Protected Visual Environments formula was used to estimate light extinction due to the chemical composition of PM_{2.5}.

The annual mean concentrations of $PM_{2.5}$ were 186, 180 and 218 µg m⁻³ in 2011, 2012 and 2013, respectively. These concentrations were 5–6 times greater than the National Ambient Air Quality Standards of China (annual value of 35 µg m⁻³) and indicated the presence of severe $PM_{2.5}$ pollution in Zhengzhou. Particulate organic matter (OM) contributed the most (18–26%) to the annual average $PM_{2.5}$, followed by SO_4^{2-} (14–19%), NO_3^- (10–11%), NH_4^+ (8–9%) and EC (3%). From 2011 to 2013, the contributions of OM and SO_4^{2-} increased by 8% and 3%, respectively. The higher sulfur oxidation ratio indicated the formation of significant amounts of secondary inorganic aerosols (SIA), particularly during the summer and spring. Obvious SOC enrichment occurred during the winter and autumn. In addition, SIA and secondary organic aerosols accounted for 26–50% and 4–21% of the $PM_{2.5}$ by mass, respectively. An investigation of the secondary species revealed that secondary aerosols played a dominant role in the total $PM_{2.5}$ mass and the decrease in visibility. The secondary aerosols ((NH₄)₂SO₄ + NH₄NO₃ + SOC) accounted for 80% of b_{ext} . The main secondary aerosols that led to poor visibility in Zhengzhou were (NH₄)₂SO₄ and NH₄NO₃.

Keywords: PM2.5; Water-soluble ionic species; Carbonaceous components; Secondary aerosols; Light extinction coefficient.

INTRODUCTION

Since 2011, the frequency of haze in urban areas throughout the country has increased. Consequently, haze has become a serious problem in China, with persistent haze pollution events in China occurring in 2013. Action plans for controlling particulate pollution and decreasing $PM_{2.5}$ (atmospheric particulate matter with an aerodynamic diameter of less than 2.5 µm) emission limits have been developed by the Chinese State Council (CSC, 2013). However, due to rapid industrialization and urbanization, China's current coal-dominated energy structure has not changed (Wang *et al.*, 2006; Zhao, 2014). Moreover, the number of vehicles in China continues to increase, which is increasing the amount of fine particulate matter in the atmosphere and decreasing atmospheric visibility. Similar

* Corresponding author.

Tel.: 1-370-371-7002; Fax: 0371-67781163

E-mail address: rqzhang@zzu.edu.cn

to other megacities, Zhengzhou, which is the capital of Henan Province in central China, experiences serious particulate pollution problems and poor visibility (DEPH, 2013; EMSC, 2013). The primary pollutant in Zhengzhou during the daytime is $PM_{2.5}$, which is responsible for 77% of polluted days (DEPH, 2014). Thus, haze occurs frequently in Zhengzhou.

 $PM_{2.5}$ adversely affects human health (Valavanidis *et al.*, 2008; Anderson *et al.*, 2012) and visibility (Xu *et al.*, 2013). Furthermore, $PM_{2.5}$ contributes to global climate change by scattering light and increasing the amount of particles that can act as nuclei for cloud condensation (Chung and Seinfeld, 2002). $PM_{2.5}$ is a multi-component system that originates from both natural and anthropogenic sources (Alves *et al.*, 2000), and mainly consists of primary aerosols that are directly emitted from sources and secondary aerosols are mainly generated through a series of chemical reactions and physical processes that involve nitrogen oxides (NO_x), sulfur dioxide (SO₂), ammonia (NH₃) and several volatile organic compounds (VOCs) that may react with ozone (O₃), hydroxyl radicals (·OH) and other reactive

molecules to form sulfate (SO₄^{2–}), nitrate (NO₃[–]), ammonium (NH₄⁺), secondary inorganic aerosols (SIA) and secondary organic carbon (SOC) (Liousse *et al.*, 1996; Squizzato *et al.*, 2013).

Aerosol measurements (Tao et al., 2009; Deng et al., 2013) have revealed that secondary chemical species strongly contribute to the overall concentration of fine particles in the atmosphere (approximately 50%). Therefore, secondary fractions are important for controlling PM_{2.5} pollution. Previous studies (Cabada et al., 2002; Tao et al., 2009; Behera and Sharma, 2010) have shown that secondary organic aerosols (SOA) are an important component of PM_{2.5}. The contributions of SOA to the total organic carbon (OC) concentration vary from nearly zero during the winter to 50% during the summer in Pittsburgh, Pennsylvania. In addition, SOC accounts for 29% of the OC concentration in PM₂₅ in Guangzhou, China, and the SOA contents of PM₂₅ during the winter and summer in Kanpur, India, are 18% and 12%, respectively. These aerosol species (SIA and SOA) are a significant cause of visibility degradation (Kim et al., 2006; Tao et al., 2009; Deng et al., 2013) and vary between different seasons and regions. In addition, the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula has been used to estimate the contributions of the chemical compositions of PM25 to light extinction, which helped determine the main factors of poor visibility (US EPA, 1999; Kim et al., 2006; Hand et al., 2011).

To better understand the secondary aerosol pollution conditions of $PM_{2.5}$, which have not been studied in Zhengzhou, the contributions of secondary species to the overall mass of $PM_{2.5}$ and their impacts on visibility were investigated. The $PM_{2.5}$ pollution levels and chemical properties (in terms of water-soluble ionic species and carbonaceous components) were determined in this study based on three years of measurements. Although many earlier studies have used short-term data, long-term data can more accurately reflect local pollution characteristics. In addition, the air quality trends shown in this study are helpful for understanding the effectiveness of pollution control strategies. Furthermore, this analysis will provide useful information for regulatory agencies and for creating strategies to control $PM_{2.5}$ in the atmosphere.

MATERIALS AND METHODS

Sampling and Mass Measurement

Zhengzhou, the capital of Henan Province, is located in central China and has a temperate continental monsoon climate. In Zhengzhou, the average temperature is approximately 14.4°C, and the average annual precipitation is approximately 640 mm. Approximately 70% of the annual precipitation in Zhengzhou occurs from June to September. Southerly winds prevail during the summer, and northerly winds prevail during the winter. Due to rapid economic development, Zhengzhou has expanded to an area of 373 square kilometers and has a total population of over 4 million (an annual natural growth of approximately 59 thousand people).

PM_{2.5} sample collections were conducted using quartz

microfiber filters (20.3 × 25.4 cm, PALL, USA) and a highvolume sampler (TE-6070D, Tisch Environmental, USA) from April 2011 to December 2013 at Zhengzhou University (Fig. 1). A TE-6070D sampler, which was equipped with a single-stage high-volume cascade impactor (TE-231, Tisch Environmental, USA), was used to remove particles larger than 10 μ m. At least 15 samples were collected each season (winter, spring, summer and autumn) using a sampling duration of 22 h (9:00 AM–7:00 AM). The mass concentration of PM_{2.5} was determined using the gravimetric method. The filters were conditioned at 20 ± 5°C before and after sampling at a relative humidity of 50 ± 5% for at least 48 h before weighing on a microbalance (Mettler Toledo XS205, Switzerland) with a precision of 0.01 mg. Next, the samples were stored in a freezer (–18°C) until analysis.

Analysis of Water-Soluble Ions

Ion concentrations (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, and SO_4^{2-}) were determined using an ion $NO_3^$ chromatograph (ICS-90, Dionex, USA). A circular punch with a known cross-sectional area was used to randomly intercept 2-6 pieces of the filter (including the middle and edge) in the sample zone. Furthermore, deionized water or an organic solvent was used to clean the punch before use. Two pieces of the samples were subjected to extractions using 25 mL of ultra-pure Milli-Q water (specific resistance: 18.2 M Ω cm). The samples were ultrasonicated in a water bath at $< 30^{\circ}$ C for 30 min before filtering through 0.22 µm filters (Menbrana, German). The eluent used for detecting anions was composed of 8.0 mM Na₂CO₃ and 1.0 mM NaHCO₃, and a flow rate of 0.8 mL min⁻¹ was used. The eluent used for detecting cations was 20 mM methane sulfonic acid (CH₃SO₃H), and a flow rate of 1.0 mL min⁻¹ was used. All ions were identified based on their respective retention times.

Analysis of Carbon Species

A piece of filter was removed from the 20.3×25.4 cm quartz filter and used for OC and elemental carbon (EC) analyses, which were conducted using an OC/EC analyzer (Sunset Laboratory, USA) and the thermal/optical transmission (TOT) method (Chow *et al.*, 2001). The detection limit was $0.2 \ \mu g \ m^{-3}$, which was calculated as three times the standard deviation (SD) of the seven blank replicates. All analyses were conducted according to the NIOSH TOT protocol (low temperature in a helium atmosphere and high temperature in a 2% oxygen/98% helium atmosphere). A He–Ne laser (633 nm) was used to monitor sample transmission and correct for EC during OC pyrolysis at high temperatures.

Quality Assurance (QA) and Quality Control (QC)

Field blank filters were analyzed to measure blank concentrations as part of QA/QC. The overall blank concentrations from the field blank samples were 0.02, 0.03, 0.00, 0.00, 0.03, 0.00, 0.01, 0.00 and 0.00 μ g m⁻³ for Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, NO₃⁻ and SO₄²⁻, respectively. In addition, the measured blank concentrations of EC and OC were 0.0 and 0.5 μ g m⁻³, respectively.

Fig. 1. Map of the sampling sites in Zhengzhou, Henan province, China.

The method detection limits (MDLs) of the ions were calculated as three times the noise and were 0.004, 0.017, 0.007, 0.006, 0.007, 0.009, 0.01, 0.07 and 0.05 μ g m⁻³ for Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, NO₃⁻ and SO₄²⁻, respectively.

Ion recoveries in spiked calibration standard samples were determined to be 90–98%, 95–105%, 91–99%, 80–91%, 87–95%, 88–95%, 89–108%, 98–102% and 93–100% for Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, NO₃⁻ and SO₄²⁻, respectively. Throughout sample testing, calibration standard curves were constructed that covered 4 orders of magnitude (0.5–100 ppm). Coefficients of > 0.999 were obtained for the ions included in the study.

RESULTS AND DISCUSSION

PM_{2.5} Mass Concentration

Overall, 66, 52 and 55 $PM_{2.5}$ samples were collected during 2011, 2012 and 2013, respectively, from the sampling site at Zhengzhou University, China. The $PM_{2.5}$ concentrations ranged from 60 to 548 µg m⁻³, 55 to 565 µg m⁻³ and 56 to 698 µg m⁻³ in 2011, 2012 and 2013, respectively, with annual mean concentrations of 186, 180 and 218 µg m⁻³. Compared with the National Ambient Air Quality Standards of the USA (annual value of 15 µg m⁻³) and the air quality guidelines of the World Health Organization (annual value of 10 µg m⁻³), our results clearly indicated severe $PM_{2.5}$ pollutions. In addition, the 3-year results (Fig. 2) showed that at least 90% of the daily $PM_{2.5}$ concentrations exceeded

the proposed standards in China (75 μ g m⁻³ daily) that will be implemented on January 1, 2016.

The PM_{2.5} compositions and concentrations are presented in Table 1. The annual averages of PM2.5 and its components have steadily increased over time. PM_{2.5} results from primary anthropogenic emissions and the secondary transformation of gas pollutants in the atmosphere. Direct emissions mainly result from combustion of fossil fuels (coal, gasoline and diesel), biomass (straw and wood), and waste. The main gas pollutants that are converted into PM_{2.5} include SO₂, NO_x, NH₃ and VOCs. Other anthropogenic sources include road dust, construction dust, industrial dust, kitchen smoke, etc. Zhengzhou is currently undergoing rapid economic development and urbanization. According to the Henan Statistical Yearbook of 2011–2013, the total energy consumption, number of vehicles, and population of Zhengzhou from 2011 to 2013 grew dramatically, with the greatest increase occurring in 2013 (Table 2). Increases in both PM_{2.5} and individual species are associated with increases in the number of vehicles and the total energy consumption in Zhengzhou. In addition, with the implementation of urban village reconstruction, construction dust has become a main source of PM_{2.5} emissions. Strong seasonal variations in PM25 were observed, with the highest concentrations occurring during the winter and the lowest concentrations occurring during the summer. The average PM_{2.5} concentrations during the winters of 2011, 2012 and 2013 were 297 \pm 160, 234 \pm 12 and 337 \pm 168 µg m⁻³ respectively, with corresponding summer values of 120 ± 40 ,

 daily averag PM2.5 	 1 Month Way	PM2-2 C013/1/23 2013/1/23 2013/1/23 2013/1/23 2013/1/27 2013/1/27 2013/1/27 2013/1/27 2013/1/27 2013/1/27 2013/1/27 2013/1/28 2013/18 2013/18 2013/18 2013/18 2013/18 2013/18 2013/18 2013/18 2013/18 2013/18 201
	Ar & MI - Ard	2012/1/12/12 2012/1/12/12 2012/1/12/12 2012/1/12/12 2011/12/12 2011/12/12 2011/12/12 2011/11/12/12 2011/11/12/12
	A and how h	L/11/1102 F/11/1102 F/11/1102 SZ/01/1102 SZ/L/1102 SZ/L/1102 SI/L/1102 SI/L/1102 SI/L/1102 S/L/1102 S/L/1102 S/L/1102 S/L/1102 S/L/1102 S/L/1102
	Mary	61/¢/1102 91/¢/1107 91/¢/1107 01/¢/1107 2/¢/1107

	DC EC	1 ± 4 5 ± 1	i±4 7±2	(± 3) 6 ± 1	± 4 5 ± 1	± 2 4 ± 1	$\pm 9 5 \pm 2$	$\pm 9 7 \pm 3$	± 16 7 ± 3	± 22 5 ± 3	± 22 11 ± 5	± 16 7 ± 4	± 28 8 ± 3	$\pm 19 \qquad 6 \pm 4$	± 17 6 ± 3	± 25 6 ± 3
es	4 ²⁻ (= 14 20	: 16 17	: 46 18	= 16 9	: 10 6	21 15	= 11 31	±8 34	22 31	= 36 45	: 10 35	= 39 54	= 22 22	= 11 24	= 32 33
al speci	SO	26 ±	31 ±	58 ±	31	24 ≟	33 ≟	24 ≟	24	27 ≟	48	23 ≟	56 ≟	33 ≟	25 ≟	44 ±
al chemic	NO_{3}^{-}	19 ± 10	14 ± 7	32 ± 13	12 ± 7	6 ± 6	12 ± 12	24 ± 12	26 ± 13	21 ± 18	31 ± 19	22 ± 9	39 ± 20	20 ± 14	18 ± 12	27 ± 19
d the individu	Cl-	5.1 ± 2.5	2.5 ± 1.3	2.0 ± 0.9	1.1 ± 0.6	0.4 ± 0.5	1.2 ± 1.0	6.7 ± 3.7	5.0 ± 2.3	3.2 ± 2.5	13.5 ± 7.4	9.2 ± 4.7	17.5 ± 10.3	5.0 ± 5.9	4.6 ± 4.4	6.6 ± 9.0
of PM _{2.5} and	노	1.0 ± 0.5	0.4 ± 0.3	0.6 ± 0.4	0.1 ± 0.1	0.0 ± 0.0	0.2 ± 0.3	0.6 ± 0.6	0.8 ± 0.5	0.3 ± 0.2	1.0 ± 0.6	0.8 ± 0.5	1.5 ± 0.8	0.5 ± 0.6	0.5 ± 0.5	0.7 ± 0.7
5D), μg m ⁻³)	Ca^{2+}	5.5 ± 1.8	3.1 ± 0.9	6.8 ± 3.6	0.8 ± 0.6	1.7 ± 2.3	2.4 ± 0.9	1.7 ± 1.1	2.3 ± 1.2	2.7 ± 1.8	1.8 ± 0.7	2.0 ± 1.5	4.7 ± 1.9	2.1 ± 2.1	2.3 ± 1.6	4.1 ± 2.8
l deviation (S	Mg^{2+}	0.6 ± 0.2	0.5 ± 0.1	0.6 ± 0.2	0.1 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	0.3 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	0.5 ± 0.2	0.3 ± 0.2	0.3 ± 0.1	0.4 ± 0.2
$n \pm standard$	$\mathbf{K}^{\scriptscriptstyle +}$	2.3 ± 0.8	1.8 ± 1.1	2.1 ± 0.7	0.8 ± 0.4	0.6 ± 0.2	1.3 ± 0.8	2.4 ± 1.0	3.0 ± 0.8	2.5 ± 1.0	4.6 ± 2.8	3.1 ± 1.3	4.5 ± 1.9	2.1 ± 2.0	2.2 ± 1.4	2.7 ± 1.8
ations (mea	$\mathrm{NH_4}^+$	10 ± 5	19 ± 10	17 ± 6	12 ± 7	11 ± 5	14 ± 10	13 ± 7	14 ± 6	15 ± 8	21 ± 16	16 ± 5	31 ± 18	15 ± 10	15 ± 7	19 ± 14
san concentra	Na^+	1.7 ± 0.8	1.2 ± 0.2	1.1 ± 0.3	0.4 ± 0.1	0.3 ± 0.1	0.5 ± 0.2	0.7 ± 0.4	0.9 ± 0.4	0.7 ± 0.3	1.4 ± 1.1	1.0 ± 0.6	1.6 ± 0.6	0.9 ± 0.9	0.8 ± 0.5	$1.0 \ 0.6$
Table 1. Mé	$PM_{2.5}$	209 ± 56	202 ± 38	192 ± 26	120 ± 40	84 ± 21	128 ± 47	222 ± 70	180 ± 72	183 ± 74	297 ± 160	234 ± 125	337 ± 168	186 ± 100	180 ± 95	218 ± 128
		2011 (n = 14)	2012 (n = 11)	2013 (n = 13)	2011 (n = 23)	2012 (n = 12)	2013 (n = 17)	2011 (n = 15)	2012 (n = 15)	2013 (n = 14)	2011 (n = 14)	2012 (n = 14)	2013 (n = 15)	2011 (n = 66)	2012 (n = 52)	2013 (n = 55)
		Spring			Summer			Autumn			Winter			Annual		

Year	Civil vehicles in millions of cars	Total energy consumption in millions of tons of standard coal equivalent	Population in millions
2011	1.24	30.10	8.86
2012	1.43	31.81	9.03
2013	1.72	35.97	9.19

Table 2. Civil vehicles, total energy consumption and population of Zhengzhou from 2011 to 2013.

Notes: Henan Statistical Yearbook 2012-2014.

 84 ± 21 and $128 \pm 47 \ \mu g \ m^{-3}$. Each species (except SO_4^{2-}) exhibited consistent $PM_{2.5}$ trends, with the highest $PM_{2.5}$ levels occurring during the winter and the lowest levels occurring during the summer. The SO_4^{2-} concentrations in $PM_{2.5}$ were lowest in the autumn.

The seasonal SO₄²⁻ concentrations of PM_{2.5} ranged from 23 ± 10 µg m⁻³ (winter of 2012) to 58 ± 46 µg m⁻³ (spring of 2013). Regarding the seasonal average, the magnitudes of SO₄²⁻ in the PM_{2.5} decreased as follows: winter (23–56 µg m⁻³) > spring (26–58 µg m⁻³) > summer (24–35 µg m⁻³) > autumn (24–27 µg m⁻³). The seasonal variations in the average NO₃⁻ concentrations decreased as follows: winter (22–39 µg m⁻³) > autumn (21–26 µg m⁻³) > spring (14–32 µg m⁻³) > summer (6–13 µg m⁻³). In addition, the seasonal NH₄⁺ concentrations in PM_{2.5} decreased as follows: winter (16–31 µg m⁻³) > spring (10–19 µg m⁻³) ≈ autumn (13–15 µg m⁻³) ≈ summer (11–14 µg m⁻³). However, in contrast with SO₄²⁻, the NO₃⁻ and NH₄⁺ concentrations in PM_{2.5} were lowest during the summer.

The results shown in Table 1 indicated that SO_4^{2-} , OC, NO_3^- , NH_4^+ and EC were the main species of the analyzed components in $PM_{2.5}$. The mass contributions of these chemical species to $PM_{2.5}$ were calculated for the annual samples (Fig. 3). The particulate organic matter (OM) shown in Fig. 3 was obtained by multiplying OC by 1.6 (Turpin and Lim, 2001). The other ions, including Na⁺, K⁺, Mg²⁺ and F⁻, were individual species with relatively low concentrations. The non-apportioned portion was obtained by subtracting the OM, EC and nine water–soluble ions from the total mass of $PM_{2.5}$.

As observed from the annual average (Fig. 3), OM contributed the most (18–26%) to $PM_{2.5}$, followed by SO_4^{2-} (14–19%), NO_3^- (10–11%), NH_4^+ (8–9%) and EC (3%). From 2011 to 2013, the contributions of each of these species increased, except for the contribution of EC which did not change. Among these species, the contributions of SO_4^{2-} increased by 8% and the contributions of SO_4^{2-} increased by 3%. The contributions of the non-apportioned species decreased from 40% (2011) to 25% (2013), which indicated that the proportions of OM, SO_4^{2-} , NO_3^- and NH_4^+ in $PM_{2.5}$ increased.

Regarding the non–apportioned portion, the results of our study were comparable with those observed in a previous study conducted in Beijing, in which approximately 35%–48% of PM_{2.5} was non–apportioned (Hu *et al.*, 2015). Several scientific studies have shown that quartz filters, which show a higher retention of organics and lower release of ammonium salts (Schaap *et al.*, 2004; Wittmaack and Keck, 2004; Vecchi *et al.*, 2009), tend to absorb more water vapor due to their hydrophilic nature and wettability

(Zdziennicka *et al.*, 2009). This water vapor would contribute to the non–apportioned mass. In addition, Hu (Hu *et al.*, 2015) inferred that approximately 15%–32% of PM_{2.5} in the quartz filters was from water vapor.

In terms of the annual trends, the mass concentration of the non-apportioned part and its contribution to the total PM mass decreased each year. According to our previous study (Geng *et al.*, 2013), the contribution of dust to $PM_{2.5}$ was 26%. If the non–apportioned portion represents only one source, we believe that it is most likely resuspended dust (including soil dust, construction dust and road dust). However, we did not measure metal concentrations in this study, which is an area that warrants future study.

Accordingly, we attribute the non–apportioned portions in this study to metal oxides, water and undefined chemical species (refractory or insoluble).

Fig. 4 shows the percentages of the chemical species in the seasonally sampled $PM_{2.5}$. Among the spring samples, the contributions of OM, EC, NH_4^+ , CI^- , Ca^{2+} and the other ions changed very little over the years studied (1%). Large increases in the SO_4^{2-} (15–30%), NO_3^- (9–16%), and NH_4^+ (5–9%) occurred in 2013 relative to the 2011 and 2012 values.

The contribution of OM in the summer samples was 12% in 2011 and 2012 and increased by 7% in 2013. The contributions of SO_4^{2-} , NO_3^- and NH_4^+ varied from 25% (2013) to 29% (2012), 7% (2012) to 9% (2013) and 11% (2013) to 13% (2012), respectively. Meanwhile, the contributions of OM, SO_4^{2-} and NH_4^+ in the autumn samples increased steadily by 8%, 6% and 2%, respectively, from 2011 to 2013. The contributions of OM, SO_4^{2-} , NO_3^- and NH_4^+ varied from 22% (2011) to 30% (2013), 10% (2011) to 16% (2013), 11% (2011) to 14% (2012) and 6% (2011) to 16% (2013), respectively. Based on the winter samples, the contributions of each constituent were the same for 2011 and 2013. The contributions of OM and SO_4^{2-} were lower in 2012 (OM: 24%, SO_4^{2-} : 10%) than in 2011 and 2013 (OM: 27%, SO_4^{2-} : 16%), and the contributions of NO_3^- and NH_4^+ varied from 10% (2011) to 12% (2013) and 7% (2012) to 9% (2013), respectively.

Overall, OM comprised a larger percentage of the $PM_{2.5}$ during the autumn and winter (22–30%). The maximum contributions of Cl⁻ to $PM_{2.5}$ occurred during the winter and reached 5%. Coal combustion releases significant amounts of chlorine (McCulloch *et al.*, 1999); thus, fine particles are enriched in OC and Cl⁻ in areas that use coal-fire heat during the winter.

The maximum contributions of SO_4^{2-} (25–29%) and NH_4^+ (11–13%) to $PM_{2.5}$ occurred during the summer, while the maximum contribution of NO_3^- occurred during the autumn

Fig. 3. Annual mean contributions of the individual components to PM_{2.5}.

Fig. 4. Seasonal contributions of the individual components to PM_{2.5}.

(11–14%) and differed from the contributions of SO_4^{2-} and NH_4^+ . This observation may be attributed to the volatility of ammonium nitrate, which is the main chemical form of nitrate and can evaporate when subjected to the relatively high temperatures that occur during the summer (Wang *et al.*, 2005). The different seasonal trends observed in the three major secondary species resulted from the differences in their formation mechanisms and the seasonal variations of the

meteorological conditions in Zhengzhou. The contributions of Ca^{2+} (the crustal ion) to the PM_{2.5} were 2–4% greater during the spring than during the other seasons because sandstorms frequently occurred during the spring.

Ionic Components and Carbonaceous Species Ionic Components

To describe the magnitude of the transformation of

atmospheric SO₂ to SO₄^{2–} and NO₂ to NO₃[–], the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were calculated (Wang *et al.*, 2005; Gao *et al.*, 2011). The SOR and NOR are defined as follows:

$$SOR = \frac{n - SO_4^{2-}}{n - SO_4^{2-} + n - SO_2}$$
(1)

$$NOR = \frac{n - NO_3^{-}}{n - NO_3^{-} + n - NO_2}$$
(2)

where $n-SO_4^{2-}$, $n-SO_2$, $n-NO_3^-$ and $n-NO_2$ are the molar concentrations of SO_4^{2-} , SO_2 , NO_3^- and NO_2 , respectively. The concentrations of SO_2 and NO_2 were obtained from air quality monitoring stations operated by the Environmental Protection Bureau of Zhengzhou, which is located four kilometers from the sampling site.

The seasonal average conversion ratios for sulfate and nitrate were calculated for PM_{2.5} in Zhengzhou (Table 3). The sulfate conversion fractions were greater during the summer (0.4 ± 0.2) and spring (0.4 ± 0.1) and were relatively constant (0.2 ± 0.1) during the autumn and winter. The mean values of NOR were similar during all four seasons (0.2 ± 0.1) . Previous studies have reported SOR values of < 0.10 in the flue gas of oil combustion boilers (Kircher *et al.*, 1977) and < 0.027 in vehicle exhaust (Pierson *et al.*, 1979; Truex *et al.*, 1980). Coal-fired boilers are commonly used in China. According to a study conducted by Wang (Wang *et al.*, 2008), the SOR in the flue gas of coal-fired power plants is much less than 0.10. Therefore, 0.10 is

regarded as a conservative (i.e., maximum) SOR value for primary pollutants. Thus, atmospheric SORs > 0.10 suggest the occurrence of photochemical oxidation of SO₂.

As shown in Table 3, significant amounts of secondary SO_4^{2-} were generated during all four seasons, and conditions that are more favorable for formation occurred during the summer and spring. In this study, the seasonal variations of SOR (or NOR) are not obvious.

The equivalent ratio of $[NH_4^+]/([NO_3^-] + 2[SO_4^{2-}])$ in PM_{2.5} (Squizzato et al., 2013; Voutsa et al., 2014) was calculated in Table 4. These values were >1.0, except during the spring, which indicated that excess NH₄ was present. The mass ratio of NO₃^{-/}SO₄²⁻ was used as an indicator of the relative importance of mobile vs. stationary sources in this study (Yao et al., 2002; Wang et al., 2006; Gao et al., 2011). According to Yao et al. (2002), the estimated ratios of NO_x to SO_x in gasoline, diesel fuel and coal combustion emissions are 13:1, 8:1 and 1:2, respectively. In addition, high NO_3^{-}/SO_4^{-2-} mass ratios result from a predominance of mobile sources over stationary sources. High NO_3^{-}/SO_4^{-2} mass ratios have been reported in southern California, with values of 2 in downtown Los Angeles and 5 in Rubidoux due to low coal use (Kim et al., 2000). As shown in Table 4, the mean NO_3^{-}/SO_4^{-2-} mass ratios for the seasonal samples in this study were approximately 0.3-1.1. Therefore, stationary source emissions were more important for contributing fine particles in the study area.

EC and OC

The seasonal EC and OC concentrations are summarized in Table 1. The OC concentrations were highest during the

		Spring	Summer	Autumn	Winter
	2011	0.4 ± 0.1	0.4 ± 0.2	0.3 ± 0.1	0.2 ± 0.1
COD	2012	0.5 ± 0.2	0.5 ± 0.1	0.2 ± 0.1	0.2 ± 0.1
SOK	2013	0.3 ± 0.2	0.4 ± 0.2	0.2 ± 0.1	0.2 ± 0.2
	ave	0.4 ± 0.1	0.4 ± 0.2	0.2 ± 0.1	0.2 ± 0.1
	2011	0.2 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	0.3 ± 0.1
NOD	2012	0.2 ± 0.1	0.2 ± 0.2	0.2 ± 0.1	0.2 ± 0.1
NOK	2013	0.3 ± 0.1	0.2 ± 0.2	0.2 ± 0.1	0.2 ± 0.1
	ave	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1

Table 3. Calculated sulfur and nitrogen oxidation ratios (SOR and NOR) of PM25.

Table 4. Neutralization ratio (NR) and NO_3^{-}/SO_4^{2-} (mean \pm SD).

		$[NH_4^+]/([NO_3^-] + 2[SO_4^{2-}])$	NO ₃ ^{-/} SO ₄ ²⁻
Spring	2011	0.7 ± 0.1	0.8 ± 0.2
	2012	1.2 ± 0.2	0.5 ± 0.1
	2013	0.6 ± 0.2	0.7 ± 0.4
	2011	1.0 ± 0.1	0.4 ± 0.1
Summer	2012	1.0 ± 0.2	0.3 ± 0.2
	2013	1.2 ± 1.6	0.3 ± 0.3
	2011	1.4 ± 2.0	1.1 ± 0.4
Autumn	2012	0.9 ± 0.1	1.1 ± 0.3
	2013	1.4 ± 2.2	0.7 ± 0.3
	2011	1.0 ± 0.2	0.8 ± 0.4
Winter	2012	1.1 ± 0.2	1.0 ± 0.4
	2013	1.0 ± 0.4	0.8 ± 0.2

winter (2011: $45 \pm 22 \ \mu g \ m^{-3}$; 2012: $35 \pm 16 \ \mu g \ m^{-3}$ and 2013: $54 \pm 28 \ \mu g \ m^{-3}$), followed by autumn, spring and summer, probably due to the combined effects of enhanced emissions from coal combustion for residential heating and stable atmospheric conditions during the winter (Duarte *et al.*, 2008). The mean OC concentrations during the summer of 2013 ($15 \pm 9 \ \mu g \ m^{-3}$) were much higher than those during the summer of 2011 ($9 \pm 4 \ \mu g \ m^{-3}$) and 2012 ($6 \pm 2 \ \mu g \ m^{-3}$). The EC concentrations showed no strong seasonal variations, except for slightly higher concentrations during the winter.

The annual mean concentrations of OC in PM_{2.5} were 22 \pm 19, 24 \pm 17 and 33 \pm 25 µg m⁻³ in 2011, 2012 and 2013, respectively. The annual mean EC values were the same for all three years (6 \pm 3 µg m⁻³), as shown in Table 1. The combined effects of greater energy consumption and improved combustion technology resulted in higher OC levels and stable EC levels.

The OC/EC ratios are presented in Table 5. In this study, the OC/EC ratios were ordered as follows: autumn (5.3 ± 1.8) > winter (4.4 ± 1.4) > spring (3.7 ± 0.8) > summer (1.9 ± 0.6) in 2011; winter (5.2 ± 2.4) > autumn (4.9 ± 0.9) > spring (2.7 ± 0.5) > summer (1.8 ± 0.5) in 2012; and winter (7.0 ± 3.1) > autumn (5.7 ± 3.3) > summer (3.8 ± 2.7) > spring (3.3 ± 0.7) in 2013.

Each of the source materials resulted in a different OC/EC ratio when burned. The reported OC/EC ratios of typical emission sources are: 1.0–4.2 for diesel- and gasoline-powered vehicular exhaust (Schauer *et al.*, 1999, 2002); 2.5–10.5 for residential coal smoke (Chen *et al.*, 2006); and 7.7 for cereal straw burning (Zhang *et al.*, 2007). The OC/EC ratios reported by Koch *et al.* (2007) using the NASA Goddard Global Climate Model were < 1 for fossil fuel burning and > 5 for biomass burning.

In this study, the OC/EC ratios were 3.3 and 2.6 during the spring and summer, respectively, which were in the OC/EC ratio ranges of petrochemical fuel (< 1) and residential coal-fired emissions (2.5–10.5). The OC/EC ratios were 5.4 and 6 during the autumn and winter, respectively, which corresponded to the OC/EC ratios of coal (2.5–10.5) and biomass (> 5) burning. Therefore, we concluded that fossil fuels (petrol, gasoline and coal) may be dominant during the spring and summer and that coal smoke and biomass

burning were the main sources of OC and EC emissions during the autumn and winter.

In our previous study, the sources of PM_{2.5} in Zhengzhou included dust (26%), secondary aerosols (24%), coal combustion (23%), biomass burning/oil combustion/ incineration (13%), vehicular emissions (10%) and industrial emissions (4%) (Geng et al., 2013). In 2011, coal consumption in Zhengzhou accounted for 78% of the total energy consumption, and oil accounted for 9% (Zhou, 2013). No statistics were available regarding biomass energy. The results of this study are consistent with those of our study and indicate the presence of a coal-dominated energy structure in Zhengzhou. Biomass energy sources, such as straw and wood, are traditional non-commercial energy sources that are dominant in rural areas. These energy sources are particularly used in households for cooking and domestic heating during the winter through direct combustion. Straw is an important component of energy consumption.

Secondary Aerosols

Directly quantifying primary and secondary organic components in $PM_{2.5}$ using chemical analysis is difficult. Several studies have estimated SOC using an EC tracer method that considers the minimum ratio of OC/EC as a constant mixture of primary OC and EC (Castro *et al.*, 1999; Cabada *et al.*, 2002, 2004; Duarte *et al.*, 2008).

The SOC can be calculated using the following equation:

$$SOC = OC - EC \left(\frac{OC}{EC}\right)_{\min}$$
 (3)

In this study, the minimum ratios of OC to EC were 1.69, 1.09, 1.86 and 2.29 for spring, summer, autumn and winter, respectively, which were similar to the ratios observed during the summer (1.08) and winter (2.32) by Cao *et al.* (2007). The estimated SOC concentrations are presented in Table 5. The SOC fraction in PM_{2.5} varied as follows: winter ($20 \pm 13 \ \mu g \ m^{-3}$) > autumn ($16 \pm 9 \ \mu g \ m^{-3}$) > spring ($10 \pm 3 \ \mu g \ m^{-3}$) > summer ($4 \pm 3 \ \mu g \ m^{-3}$) > spring ($10 \pm 12 \ \mu g \ m^{-3}$) > winter ($19 \pm 13 \ \mu g \ m^{-3}$) > spring

		OC/EC	SOC	SOC/OC	SIA	SPM
			$\mu g m^{-3}$	%	$\mu g m^{-3}$	$\mu g m^{-3}$
	2011	3.7 ± 0.8	10 ± 3	53 ± 8	56 ± 27	66 ± 27
Spring	2012	2.7 ± 0.5	7 ± 2	39 ± 9	64 ± 32	71 ± 32
	2013	3.2 ± 0.5	8 ± 3	47 ± 8	98 ± 47	107 ± 48
Summer	2011	1.9 ± 0.6	4 ±3	39 ± 19	52 ± 24	56 ± 25
	2012	1.8 ± 0.5	2 ± 2	35 ± 19	41 ± 16	43 ± 16
	2013	3.8 ± 2.7	10 ± 7	56 ± 19	49 ± 40	74 ± 42
	2011	5.3 ± 1.8	16 ± 9	56 ± 22	59 ± 24	76 ± 27
Autumn	2012	4.9 ± 0.9	21 ± 12	60 ± 8	64 ± 26	84 ± 35
	2013	5.7 ± 3.3	25 ± 19	62 ± 17	63 ± 43	90 ± 53
Winter	2011	4.4 ± 1.4	20 ± 13	44 ± 16	91 ± 55	111 ± 66
	2012	5.2 ± 2.4	19 ± 13	49 ± 22	61 ± 21	83 ± 27
	2013	7.0 ± 3.1	39 ± 24	63 ± 14	125±76	164 ± 98

Table 5. Seasonal OC/EC ratios, SOC and SIA fraction contributions to PM2.5

 $(7 \pm 2 \ \mu g \ m^{-3}) >$ summer $(2 \pm 2 \ \mu g \ m^{-3})$ in 2012; and winter $(39 \pm 24 \ \mu g \ m^{-3}) >$ autumn $(25 \pm 19 \ \mu g \ m^{-3}) >$ summer $(10 \pm 7 \ \mu g \ m^{-3}) >$ spring $(8 \pm 3 \ \mu g \ m^{-3})$ in 2013.

In 2011 and 2012, the maximum SOC to OC ratios occurred during the autumn (56 \pm 22% and 60 \pm 8%, respectively), and the minimum ratios $(39 \pm 19\%)$ and $35 \pm$ 19%, respectively) occurred during the summer. In 2013, the lowest SOC to OC ratio occurred during the spring $(47 \pm 8\%)$ and increased to > 62% during the autumn and winter. This result clearly indicated that the OC was dominated by SOC. On average, the contributions of SOC to $PM_{2.5}$ were 3–5, 3-10, 6-12 and 8-11% during the spring, summer, autumn and winter, respectively. This seasonal pattern (i.e., the contribution being highest in winter) was consistent with the results for Xiamen, as reported by Niu et al. (2012); however, these results were different from those obtained by Castro et al. (1999) and Cao et al. (2007), who reported that minimum SOC production occurred during the winter. SOC was formed from the atmospheric oxidation of volatile organic compounds (VOCs) and subsequent gas-to-particle conversion processes. In the study by Niu et al. (2012), it was concluded that low humidity, suitable temperatures (4-20°C) and low sunlight were advantageous for the formation of SOC. Temperature had a dramatic effect on the formation of secondary organic aerosols; the formation of SOA was approximately 2.5-6 times greater at 5°C (the lowest temperature studied) than at $> 27^{\circ}$ C (Warren *et al.*, 2009). The climate of Zhengzhou is dry, with an annual average temperature of 14°C (-1 to 9°C in winter) and moderate sunlight, which may be favorable for the formation of SOC.

Meanwhile, greater emissions from residential heating (from mid-November to mid-March) could significantly contribute to the formation of the SOC fraction. The largest anthropogenic source of VOCs in Henan was stationary combustion (mainly residential coal combustion and biomass burning) (Fan *et al.*, 2012). Zhengzhou is the provincial capital of Henan province and is surrounded by several rural areas. Biomass energy sources, such as straw and wood, have long been used as traditional non-commercial energy sources and dominate the energy consumption in rural areas. As the rural economy improved and lifestyles changed, the proportion of non-commercial energy decreased, stabilizing at approximately 50% after 2000 (Shi *et al.*, 2010). However, straw consumption remained stable, and straw remains an important energy source.

Overall, the enrichment of SOC during autumn and winter is due to an increase in the emissions from residential coal and biomass combustion and the low-temperature transformation of VOCs and their condensation on particulate matter.

Secondary Components

The SIA fraction and the secondary particulate matter (SPM) fraction are summarized in Table 5. The highest SIA occurred during the winter ($125 \pm 76 \ \mu g \ m^{-3}$), and the lowest occurred during the summer ($41 \pm 16 \ \mu g \ m^{-3}$). A similar seasonal pattern was observed for SPM, with concentrations of $43 \pm 16 \ \mu g \ m^{-3}$ during the summer and $164 \pm 98 \ \mu g \ m^{-3}$ during the winter.

To understand the secondary aerosol pollution conditions,

the contributions of secondary species to the overall $PM_{2.5}$ mass are shown in Fig. 5. On average, the contributions of SIA (NH₄⁺, SO₄²⁻ and NO₃⁻) to PM_{2.5} decreased as follows: summer (41–50%) > winter (26–36%) \approx autumn (26–35%) > spring (27–33%). The contributions of SOA to PM_{2.5} were 5–8%, 4–19%, 18–21% and 13–17% during the spring, summer, autumn and winter, respectively. The results showed the same seasonal trends as reported by Behera and Sharma (2010) for Kanpur, India, who concluded that the SIA and SOA of PM_{2.5} were approximately 34% and 12% in the summer and 32% and 18% in the winter, respectively.

Regarding the annual average, SIA accounted for 35%, 33% and 38% of the PM_{2.5} during 2011, 2012 and 2013, respectively, with corresponding SOA contributions of 9%, 12% and 18%, respectively. Secondary aerosols accounted for 35–41%, 54–60%, 36–56% and 39–53% of the PM_{2.5} mass during the spring, summer, autumn and winter, respectively, with the greatest contributions occurring during the summer of 2013 and the lowest contributions occurring during the spring of 2011. Thus, secondary aerosols, which comprise a large fraction of PM_{2.5}, are important.

Visibility Degradation Impacts

The light extinction coefficient (b_{ext}) was estimated using the following formula proposed by the IMPROVE program and by applying the PM_{2.5} chemical composition measurements to reconstruct b_{ext} (IMPROVE, a):

$b_{\text{ext}} = (3)f(\text{RH})[\text{SULFATE}] + (3)f(\text{RH})[\text{NITRATE}] + (4)[\text{OMC}] + (10)[\text{LAC}] + (1)[\text{SOIL}] + (0.6)[\text{CM}]$

The definitions of the species are as follows: [SULFATE] is $(NH_4)_2SO_4 = 1.37[SO_4^{2-}]$; [NITRATE] is $NH_4NO_3 = 1.29[NO_3^-]$; [OMC] (organic mass by carbon) = 1.4[OC]; [LAC] (light absorbing carbon) = [EC]; [SOIL] (fine soil) = 2.2[AI] + 2.49[Si] + 1.63[Ca] + 2.42[Fe] + 1.94[Ti]; [CM] (coarse mass) = [PM_{10}] - [PM_{2.5}]. b_{ext} has units of Mm⁻¹. The brackets indicate the average mass concentrations of the aerosol species. The specific dry scattering efficiency is 3 m² g⁻¹ for ammonium sulfate and ammonium nitrate, 4 m² g⁻¹ for organic carbon, 1 m² g⁻¹ for soil, and 0.6 m² g⁻¹ for coarse mass. In addition, the specific absorption efficiency for LAC is 10 m² g⁻¹. The relative humidity scattering enhancement factor, *f*(RH), was defined as 2 in this study based on the IMPROVE monitoring network (IMPROVE, b) and the annual average relative humidity of Zhengzhou (67%).

In our previous study, crust and trace elements only comprised 2–3% of the PM_{2.5} in Zhengzhou (Geng *et al.*, 2103). This study focused on the major chemical components of PM_{2.5} and omitted the fine soil component, which was not included in the calculation. In this study, the factor used to convert OC to OM to account for the hydrogen, oxygen, and nitrogen present in the OM was changed from 1.4 to 1.6 (Turpin and Lim, 2001). Furthermore, the organic mass was divided into two fractions: POC (primary organic carbon) and SOC ([OMC] = 1.6{[POC] + [SOC]}).

Fig. 6 provides the seasonal and annual extinction coefficients from 2011to 2013. Generally, the annual mean extinction coefficients were 581, 566 and 847 Mm^{-1} for

Fig. 5. Annual and seasonal contributions of the secondary components to the PM_{2.5} mass concentrations during 2011–2013.

2011, 2012 and 2013, respectively, with the highest value (1212 Mm⁻¹) occurring during the winter of 2013 and the lowest value (321 Mm⁻¹) occurring during the summer of 2012. The concentrations of PM_{2.5} and its individual components greatly increased from 2011 and 2012 to 2013, which caused the light extinction coefficient reconstructed by the components to increase by a greater amount in 2013. Higher values of the extinction coefficient indicate lower visibility. This result also reflects the important impacts of $PM_{2.5}$ on atmospheric visibility. In addition, the b_{ext} value at the Zhengzhou site was much higher than that obtained from the PM_{2.5} reconstructed aerosol light extinction coefficient $(b_{ext aer})$ in the IMPROVE regions over 2005–2008. These values were reported as 5.73 Mm⁻¹ in the Great Basin in January, 127.26 Mm⁻¹ in Appalachia, USA, in August (rural) and 246.09 Mm⁻¹ in urban Fresno CA, USA, in December (Hand et al., 2011). Therefore, the visibility in the Zhengzhou region was very poor.

Fig. 7 shows the seasonal and annual percentages of the contributions of the chemical species to the light extinction coefficient. As shown in Fig. 7, (NH₄)₂SO₄ contributed the most (37–42%) to b_{ext} according to the annual average results, followed by NH₄NO₃ (23-25%), SOM (11-19%), POM (9-13%) and EC (8-11%). The percentages of SOM increased by 8% from 2011 to 2013, while those of the other species decreased in 2013. The secondary aerosols ((NH₄)₂SO₄ + $NH_4NO_3 + SOM$) accounted for 76–83% of the total b_{ext} , with sulfate and nitrate $((NH_4)_2SO_4 + NH_4NO_3)$ accounting for 61-67%. These results implied that sulfate was the largest contributor to visibility degradation. However, the secondary species, particularly SIA, played a dominant role in the degradation of visibility in Zhengzhou. The major species that influenced the visibility depended on the region. The light extinction contributions that were reported for the spring of 2007 in Guangzhou, China (Tao et al., 2009), were as follows: $(NH_4)_2SO_4 (40 \pm 6\%) > OM (22 \pm 4\%) \approx$

EC $(22 \pm 4\%) > NH_4NO_3$ $(16 \pm 4\%)$. These contributions were different from those in Zhengzhou. The significant contributions of $(NH_4)_2SO_4 + NH_4NO_3$ to the degradation of visibility resulted from the relatively high percentage of SIA in PM_{2.5}.

In terms of seasonal percentages, (NH₄)₂SO₄ contributed the most to PM_{2.5} during the summer. NH₄NO₃ and SOM had the highest contributions during the autumn, and these species exhibited seasonal patterns that were similar to those of the mass-based contributions to PM2.5. Overall, secondary aerosols ((NH_4)₂SO₄ + NH_4NO_3 + SOM) accounted for 80% of b_{ext} , and primary aerosols (POM + EC) accounted for 20%. Clearly, secondary aerosols played a dominant role in the degradation of visibility in Zhengzhou. The same conclusion has been reported for other cities in the Pearl River Delta in China (Deng et al., 2013), where the extinction contribution of secondary aerosols was 60% in the dry environment ($f(RH) \approx 1.0$) and increased to 75% and 82% at RH = 80% (f(RH) \approx 3.0) and 95% (f(RH) \approx 6.0), respectively. These values are closely related to the high f(RH) values that are used to calculate b_{ext} in the Pearl River Delta.

Even when considering all of the involved uncertainties (e.g., the variable RH, empirical equations and magnitudes of the coefficients), the secondary species still played an important role in PM_{2.5}. NOx and VOCs emissions drive photochemical reactions and their associated oxidants. Secondary fine particles are formed from photochemical and other reactions that involve precursor gases, such as SO₂, NO_x, NH₃ and VOCs. Most cities lack routine VOC measurements, and control of NH₃ and VOCs is lacking. Therefore, reducing secondary species by strengthening the control of SIA and SOA precursors, such as NO_x, SO₂, NH₃ and VOCs, will play an important role in controlling China's PM_{2.5} levels and reducing their influences on the environment.

Fig. 6. Extinction coefficients from 2011 to 2013.

Fig. 7. Annual and seasonal extinction contributions of the individual components to PM_{2.5}.

SUMMARY AND CONCLUSIONS

The annual mean concentrations of $PM_{2.5}$ were 186, 180 and 218 µg m⁻³ in 2011, 2012 and 2013, respectively. The $PM_{2.5}$ levels in Zhengzhou were 5–6 times greater than the values listed by the National Ambient Air Quality Standard of China (annual value of 35 µg m⁻³). Thus, severe $PM_{2.5}$ pollution occurs in Zhengzhou. The general increases observed in $PM_{2.5}$, particularly in SIA and SOC, are associated with increases in the number of vehicles and the total energy consumption in Zhengzhou. Regulatory agencies should strictly enforce air pollution control measures and identify effective measures for reducing primary and secondary $PM_{2.5}$ to control air pollution.

Regarding the annual average $PM_{2.5}$, OM was the largest contributor (18–26%), followed by SO_4^{2-} (14–19%), NO_3^{-}

(10–11%), NH₄⁺ (8–9%) and EC (3%). From 2011 to 2013, the contribution of OM increased by 8%, and that of $SO_4^{2^-}$ increased by 3%. The relatively stable EC concentration revealed improvements in combustion technologies despite the increasing energy consumption. Moreover, measures should be taken to reduce the increasing OC concentration and prevent the exacerbation of OM pollution.

As indicated by the NO_3^{-}/SO_4^{2-} mass ratio, stationary source emissions remain an important contributor of fine particles in Zhengzhou. Obvious SOC enrichment can be observed during the winter and autumn, most likely due to biomass burning and increased coal combustion during the autumn and winter.

An investigation of secondary species revealed that secondary aerosols played a dominant role in the total mass of $PM_{2.5}$ and the degradation of visibility. SIA accounted

for 26–50% of the PM_{2.5} mass, while SOM accounted for 4–21%. In addition, secondary aerosols ($(NH_4)_2SO_4 + NH_4NO_3 + SOC$) accounted for 80% of the b_{ext} , and $(NH_4)_2SO_4$ and NH₄NO₃ were the main factors related to poor visibility in Zhengzhou.

To achieve $PM_{2.5}$ pollution control targets, measures must be taken to control NO_x , SO_2 , NH_3 and VOC emissions.

ACKNOWLEDGMENTS

This study was supported by the Ministry of Environmental Protection of the People's Republic of China (grant no. 201409010). The authors would like to thank those who assisted with the analyses: Yuanqian Xu, Junhua Wei, Yinan Gao, and Panru Kang.

REFERENCES

- Alves, C.A., Pio, C.A. and Duarte, A.C. (2000). Particle Size Distributed Organic Compounds in a Forest Atmosphere. *Environ. Sci. Technol.* 25: 2133–2140.
- Anderson, J.O., Thundiyil, J.G. and Stolbach, A. (2012). Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. *J. Med. Toxicol.* 8: 166–175.
- Behera, S.N. and Sharma, M. (2010). Reconstructing Primary and Secondary Components of PM_{2.5} Composition for an Urban Atmosphere. *Aerosol Sci. Technol.* 44: 983–992.
- Cabada, J.C., Pandis, S.N. and Robinson, A.L. (2002). Sources of Atmospheric Carbonaceous Particulate Matter in Pittsburgh, Pennsylvania. J. Air Waste Manage. Assoc. 52: 732–741.
- Cabada, J.C., Pandis, S.N., Subramanian, R., Robinson, A.L., Polidori, A. and Turpin, B. (2004). Estimating the Secondary Organic Aerosol Contribution to PM_{2.5} Using the EC Tracer Method. *Aerosol Sci. Technol.* 38: 140–155.
- Cao, J., Lee, S.C., Chow, J.C., Watson, J.G., Ho, K.F., Zhang, R., Jin, Z., Shen, Z., Chen, G., Kang, Y., Zou, S., Zhang, L., Qi, S., Dai, M., Cheng, Y. and Hu, K. (2007). Spatial and Seasonal Distributions of Carbonaceous Aerosols over China. *J. Geophys. Res.* 112: D22S11, doi: 10.1029/2006JD008205.
- Castro, L.M., Pio, C.A., Harrison, R.M. and Smith, D.J.T. (1999). Carbonaceous Aerosol Particles in Urban and Rural European Atmospheres: Estimation of Secondary Organic Carbon Concentrations. *Atmos. Environ.* 33: 2771–2281.
- Chen, Y., Zhi, G., Feng, Y., Fu, J., Feng, J., Sheng, G. and Simoneit, B.R.T. (2006). Measurements of Emission Factors for Primary Carbonaceous Particles from Residential Raw-Coal Combustion in China. *Geophys. Res. Lett.* 33: L20815, doi: 10.1029/2006GL026966.
- Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H. and Merrifield, T. (2001). Comparison of IMPROVE and NIOSH Carbon Measurement. *Aerosol Sci. Technol.* 34: 23–34.
- Chung, S.H. and Seinfeld, J.H. (2002). Global Distribution and Climate Forcing of Carbonaceous Aerosols. J. Geophys. Res. 107: AAC 14–1–AAC 14–33, doi:

10.1029/2001JD001397.

- CSC (Chinese State Council) (2013). Atmospheric Pollution Prevention and Control Action Plan, http://www.gov.cn/ zwgk/2013-09/12/content_2486773.htm (in Chinese).
- Deng, X., Wu, D., Yu, J., Lau, A.K., Li, F., Tan, H., Yuan, Z., Ng, W.M., Deng, T., Wu, C. and Zhou, X. (2013). Characterization of Secondary Aerosol and Its Extinction Effects on Visibility over the Pearl River Delta Region, China. J. Air Waste Manage. Assoc. 63: 1012–1021.
- DEPH (Department of Environmental Protection of Henan Province) (2013). http://www.hnep.gov.cn/tabid/435/Inf oID/7068/Default.aspx(in Chinese), Published : June 4 2 013.
- DEPH (Department of Environmental Protection of Henan Province) (2014). http://www.hnep.gov.cn/tabid/435/Inf oID/11750/Default.aspx (in Chinese), Published : June 3 2014.
- Duarte, R.M.B.O., Mieiro, C.L., Penetra, A., Pio, C.A. and Duarte, A.C. (2008). Carbonaceous Materials in Size-Segregated Atmospheric Aerosols from Urban and Coastal-Rural Areas at the Western European Coast. *Atmos. Res.* 90: 253–263.
- EMSC (Environment Monitoring Station of China) (2013). The Air Quality Status Report of 74 Cities in January 2013, http://www.cnemc.cn/publish/totalWebSite/news/ news_33891.html (in Chinese), Published: February 7 2013.
- Fan, C., Wang, X., Wang, Y., Liu, F. and Wu, C. (2012). Anthropogenic Total Emissions and Distribution of Non-methane Volatile Organic Compounds in China. *Sichuan Environment.* 31: 82–87 (in Chinese).
- Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., Shou, Y., Wang, J., Wang, X., Nie, W., Xu, P. and Wang, W. (2011). Semi-Continuous Measurement of Water-Soluble Ions in PM_{2.5} in Jinan, China: Temporal Variations and Source Apportionments. *Atmos. Environ.* 45: 6048– 6056.
- Geng, N., Wang, J., Xu, Y., Zhang, W., Chen, C. and Zhang, R. (2013). PM_{2.5} in an Industrial District of Zhengzhou, China: Chemical Composition and Source Apportionment. *Particuology* 11: 99–109.
- Hand, J.L., Copeland, S.A., Day, D.E., Dillner, A.M., Indresand, H., Malm, W.C., McDade, C.E., Moore, C.T., Pitchford, M.L., Schichtel, B.A. and Watson, J.G. (2011). Spatial and Seasonal Patterns and Temporal Variability of Haze and Its Constituents in the United States, Report
- V. IMPROVE Reports, http://vista.cira.colostate.edu/impr ove/Publications/improve_reports.htm.
- Henan Statistical Yearbook 2011 (2012). China Statistics Press, Beijing.
- Henan Statistical Yearbook 2012 (2013). China Statistics Press, Beijing.
- Henan Statistical Yearbook 2013 (2014). China Statistics Press, Beijing.
- Hu, G., Sun, J., Zhang, Y., Shen, X. and Yang, Y. (2015). Chemical Composition of PM_{2.5} Based on Two-Year Measurements at an Urban Site in Beijing. *Aerosol Air Qual. Res.* 15: 1748–1759, doi: 10.4209/aaqr.2014.11.0 284.

- IMPROVE (Interagency Monitoring of Protected Visual Environments) (b). Relative Humidity Adjustment Factors, f(RH), http://vista.cira.colostate.edu/improve/Tools/hu midity correction.htm.
- IMPROVE (Interagency Monitoring of Protected Visual Environments) (a). Reconstructing Light Extinction from Aerosol Measurements, http://vista.cira.colostate.edu/i mprove/Tools/ReconBext/reconBext.htm.
- Kim, B.M., Teffera, S. and Zeldin, M.D. (2000). Characterization of PM_{2.5} and PM₁₀ in the South Coast Air Basin of Southern California: Part 1 Spatial Variations. *J. Air Waste Manage. Assoc.* 50: 2034–2044.
- Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K. and Han, J.S. (2006). Fine Particulate Matter Characteristics and Its Impact on Visibility Impairment at Two Urban Sites in Korea: Seoul and Incheon. *Atmos. Environ.* 40: 593–605.
- Koch, D., Bond, T.C., Streets, D., Unger, N. and van der Werf, G.R. (2007). Global Impacts of Aerosols from Particular Source Regions and Sectors. J. Geophys. Res. 112, doi: 10.1029/2005JD007024.
- Liousse, C., Penner, J.E., Chuang, E.C., Walton, J.J., Eddleman, H. and Cachier, H. (1996). A Global Three-Dimensional Model Study of Carbonaceous Aerosols. J. Geophys. Res. 101: 19411–19432.
- McCulloch, A., Aucott, M.L., Benkovitz, C.M., Graedel, T.E., Kleiman, G., Midgley, P.M. and Li, Y.F. (1999). Global Emissions of Hydrogen Chloride and Chloromethan from Coal Combustion, Incineration and Industrial Activities: Reactive Chlorine Emissions Inventory. J. Geophys. Res. 104: 8391–8403.
- Niu, Z., Zhang, F., Kong, X., Chen, J., Yin, L. and Xu, L. (2012). One-Year Measurement of Organic and Elemental Carbon in Size-Segregated Atmospheric Aerosol at a Coastal and Suburban Site in Southeast China. *J. Environ. Monit.* 14: 2961–2967.
- Schaap, M., Spindler, G., Schultz, M., Acker, K., Maenhaut, W., Berner, A., Wieprecht, W., Streit, N., Muller, K., Bruggeman, E., Chi, X., Putaud, J.P., Hitzenberger, R., Puxbaum, H., Baltensperger, U. and ten Brink, H. (2004). Artefacts in the Sampling of Nitrate Studied in the "INTERCOMP" Campaigns of EUROTRACAEROSOL. Atmos. Environ. 38: 6487–6496.
- Schauer, J.J., Kleeman, M.J., Cass, G.R. and Simoneit, B.R.T. (1999). Measurement of Emissions from Air Pollution Sources. 2. C₁ through C₃₀ Organic Compounds from Medium Duty Diesel Trucks. *Environ. Sci. Technol.* 33: 1578–1587.
- Schauer, J.J., Kleeman, M.J., Cass, G.R. and Simoneit, B.R.T. (2002). Measurement of Emissions from Air Pollution Sources. 5. C₁-C₃₂ Organic Compounds from Gasoline-Powered Motor Vehicles. *Environ. Sci. Technol.* 36: 1169–1180.
- Shi, H., Qi, Y. and Liu, Y. (2010). Research of Environmental Effects about Rural Energy Consumption. *China Popul. Resour. Environ.* 20: 148–153.
- Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G. and Pavoni, B. (2013). Factors Determining the Formation of Secondary Inorganic Aerosol: A Case Study in the Po Valley (Italy). *Atmos.*

Chem. Phys. 13: 1927–1939.

- Tao, J., Ho, K., Chen, L., Zhu, L., Han, J. and Xu, Z. (2009). Effect of Chemical Composition of PM_{2.5} on Visibility in Guangzhou, China, 2007 Spring. *Particuology* 7: 68–75.
- Turpin, B.J. and Lim, H.J. (2001). Species Contributions to PM_{2.5} Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. *Aerosol Sci. Technol.* 35: 602–610.
- US EPA (US Environmental Protection Agency) (1999). Visibility Monitoring Guidance Document. EPA-454/R-99-003, U.S. Environmental Protection Agency, Washington, DC.
- Valavanidis, A., Fiotakis, K. and Vlachogianni, T. (2008). Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev. 26: 339–362.
- Vecchi, R., Valli, G., Fermo, P., D'Alessandro, A., Piazzalunga, A. and Bernardoni, V. (2009). Organic and Inorganic Sampling Artefacts Assessment. *Atmos. Environ.* 43: 1713–1720.
- Voutsa, D., Samara, C., Manoli, E., Lazarou, D. and Tzoumaka, P. (2014). Ionic Composition of PM_{2.5} at Urban Sites of Northern Greece: Secondary Inorganic Aerosol Formation. *Environ. Sci. Pollut. Res.* 21: 4995–5006.
- Wang, H., Hao, Z., Zhuang, Y., Wang, W. and Liu, X. (2008). Characterization of Inorganic Components of Size-Segregated Particles in the Flue Gas of a Coal-Fired Power Plant. *Energy Fuels* 22: 1636–1640.
- Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S. and Zheng, A. (2005). The Ion Chemistry and the Source of PM_{2.5} Aerosol in Beijing. *Atmos. Environ.* 39: 3771–3784.
- Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J. and An, Z. (2006). The Ion Chemistry, Seasonal Cycle and Sources of PM_{2.5} and TSP Aerosol in Shanghai. *Atmos. Environ.* 40: 2935–2952.
- Warren, B., Austin, R.L. and Cocker, III. D.R. (2009). Temperature Dependence of Secondary Organic Aerosol. *Atmos. Environ.* 43:3548–3555.
- Wittmaack, K. and Keck, L. (2004). Thermodesorption of Aerosol Matter on Multiple Filters of Different materials for a More Detailed Evaluation of Sampling Artifacts. *Atmos. Environ.* 38: 5205–5215.
- Xu, W., Chen, H., Li, D., Zhao, F. and Yang, Y. (2013). A Case Study of Aerosol Characteristics during a Haze Episode over Beijing. *Procedia Environ. Sci.* 18: 404–411.
- Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K. and Ye, B. (2002). The Water-Soluble Ionic Composition of PM_{2.5} in Shanghai and Beijing, China. *Atmos. Environ.* 36: 4223–4234.
- Zdziennicka, A., Szymczyk, K. and Janczuk, B. (2009). Correlation between Surface Free Energy of Quartz and Its Wettability by Aqueous Solutions of Nonionic, Anionic and Cationic Surfactants. *J. Colloid Interface Sci.* 340: 243–248.
- Zhang, Y., Shao, M., Zhang, Y., Zeng, L., He, L., Zhu, B.,

Wei, Y. and Zhu, X. (2007). Source Profiles of Particulate Organic Matters Emitted from Cereal Straw Burnings. *J. Environ. Sci.* 19: 167–175.

- Zhao, M. (2014). An Empirical Analysis of the Relationship between Our Country Tax Revenue Growth and GDP Growth. *Technological Development of Enterprise* 33: 118–120 (in Chinese).
- Zhou, C. (2013). Study on Energy Consumption Structure of Zhengzhou. *Mark Res.* 3: 54–57 (in Chinese).

Received for review, January 4, 2015 Revised, April 9, 2015 Accepted, July 31, 2015