Cite this article: Shahraiyni, H.T., Sodoudi, S., Kerschbaumer, A. and Cubasch, U. (2015). New Technique for Ranking of Air Pollution Monitoring Stations in the Urban Areas Based upon Spatial Representativity (Case Study: PM Monitoring Stations in Berlin).
Aerosol Air Qual. Res.
15: 743-748. https://doi.org/10.4209/aaqr.2014.12.0317
HIGHLIGHTS
New approach to the spatial representativity of background stations is presented.
Here, spatial representativity is expressed independent of the location of station.
A ranking method is developed for the ranking of stations using this new approach.
This new ranking method was applied for the ranking of PM stations in Berlin.
Ranking method was able to rank the stations based upon spatial representativity.
ABSTRACT
The spatial representativity of monitoring stations plays a major role for the reasonable estimation of air pollutants. The ranking of air pollution monitoring stations based upon their spatial representativity identifies the level of representativeness of the stations and is very useful for developing optimum monitoring networks. In this study, a new ranking method, named RTFI (Ranking Technique based upon Fuzzy Interpolation) is introduced. This ranking method is able to rank air pollution monitoring stations in the urban areas based upon their spatial representativity. Although spatial correlation techniques are often used in the ranking techniques in order to consider spatial representativity, in this ranking technique, the spatial representativity of a station is not limited to its surroundings and is measured independently of its location. RTFI was applied to airborne Particulate Matter (PM) at seven stations in Berlin, and ranked them according to their spatial representativity. The results showed that the Neukölln-Nanenstr station (MC 42) is the most spatially representative station among the studied stations.
Keywords: Airborne particulate matter; Spatial representative; Monitoring network; Ranking Technique based upon Fuzzy Interpolation (RTFI); Background stations
Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.