Jie Yu1,2, Huizheng Che 2,3, Quanliang Chen1, Xiangao Xia4,5, Hujia Zhao6, Hong Wang2, Yaqiang Wang2, Xiaoye Zhang2, Guangyu Shi7

  • 1 Plateau Atmospheric and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
  • 2 Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
  • 3 Jiangsu Collaborative Innovation Center of Climate Change, Nanjing, 210093, China
  • 4 Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 5 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • 6 Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110016, China
  • 7 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

Received: January 4, 2015
Revised: March 31, 2015
Accepted: May 7, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2014.12.0326  

  • Download: PDF


Cite this article:
Yu, J., Che, H., Chen, Q., Xia, X., Zhao, H., Wang, H., Wang, Y., Zhang, X. and Shi, G. (2015). Investigation of Aerosol Optical Depth (AOD) and Ångström Exponent over the Desert Region of Northwestern China Based on Measurements from the China Aerosol Remote Sensing Network (CARSNET). Aerosol Air Qual. Res. 15: 2024-2036. https://doi.org/10.4209/aaqr.2014.12.0326


HIGHLIGHTS

  • AOD of northwestern China (NWC) was investigated from CARSNET observation.
  • Different AOD variations were found over rural and urban sites of NWC.
  • Both mineral dust and anthropogenic aerosols contribute the AOD variation over NWC.

 

ABSTRACT


Aerosols at ten sites in northwestern China are classified in this study: (1) by using the aerosol optical depth (AOD), the Ångström exponent (α) and the Ångström exponent difference (δα); and (2) by using the total means of AOD440nm and α. The seasonal variations of the AOD and α show that the maximum AODs occur in spring, except at Urumqi and Lanzhou. The seasonal mean α values are lower than 0.80 in all four seasons at Tazhong, Hotan, Hami, Ejina, Dunhuang, Minqin, and Jiuquan, but higher than 0.80 in winter at Urumqi, Lanzhou and Yinchuan. The first classification method shows that coarse mode particles are found at all ten sites, but that fine mode growth only happens at Urumqi, Lanzhou, and Yinchuan. The relationship between AOD440nm and α show that α smaller than 0.80 decrease with increasing AOD440nm at all ten sites. Aerosols are classified into four types (Type I–IV) according to the total mean τ440 (τ̅440) and total mean Ångström exponent () of each site. Aerosols with a τ440 smaller than τ̅440, but greater than or equal to (τ440τ̅440; α) are classified as Type I; aerosols with τ440 ≥ τ̅440 and α are Type II; those with τ440 < and α < are Type III; and those with τ440 ≥ τ̅440 and α < are Type IV. The second aerosol classification method shows that Type I and Type III aerosols are the most common at all ten sites. Type II aerosols are the least at Tazhong and Hotan, but are the most common at Urumqi, Lanzhou, and Yinchuan. On the contrary, Type IV aerosols are the most common at Tazhong and Hotan, but are the least common at Urumqi, Lanzhou and Yinchuan.


Keywords: Ångström exponent; Aerosol optical depth (AOD); Aerosol classification; Northwestern China


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2021 Impact Factor: 4.53
5-Year Impact Factor: 3.668

The Future Environment and Role of Multiple Air Pollutants

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.