Anjum Rasheed1, Viney P. Aneja 1, Anantha Aiyyer1, Uzaira Rafique2

  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
  • 2 Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan

Received: October 30, 2014
Revised: October 30, 2014
Accepted: January 22, 2015
Download Citation: ||  

  • Download: PDF

Cite this article:
Rasheed, A., Aneja, V.P., Aiyyer, A. and Rafique, U. (2015). Measurement and Analysis of Fine Particulate Matter (PM2.5) in Urban Areas of Pakistan. Aerosol Air Qual. Res. 15: 426-439.


  • We examine spatial and temporal changes in fine PM2.5 in urban areas of Pakistan.
  • PM2.5 mass concentration is analyzed in Islamabad, Lahore, Peshawar and Quetta.
  • Urban PM2.5 concentration exceeds Pakistan’s National Environmental Quality Standards.
  • The role of meteorology and the origin of air masses on PM2.5 air pollution is analyzed.



In order to assess the extent of air quality within the major urban environments in Pakistan, PM2.5 pollutant has been analyzed during the period 2007–2011 in Islamabad; and 2007 to 2008 in Lahore, Peshawar and Quetta (high elevation, 1680 m MSL). Seasonal and diurnal variations of PM2.5 mass concentration formation and accumulation within these areas have been analyzed. Air quality monitoring data and meteorological data (both QA/QCed) were obtained from Federal and Provincial Pakistan Environmental Protection Agencies. In Islamabad, the annual average PM2.5 mass concentrations were 81.1 ± 48.4 µg/m3, 93.0 ± 49.9 µg/m3, 47.8 ± 33.2 µg/m3, 79.0 ± 49.2 µg/m3, and 66.1 ± 52.1 µg/m3 during 2007 to 2011 respectively. Comparison of the four cities during summer 2007 to spring 2008 shows that all the four cities had PM2.5 concentration exceeding the Pakistan National Environmental Quality Standards (annual average concentration of 25 µg/m3; and 24 hourly average concentration of 40 µg/m3) for ambient air. During the same time period, the highest seasonal PM2.5 mass concentrations for Islamabad were observed as 98.5 µg/m3 during spring 2008; 150.4 ± 87.9 µg/m3; 104.1 ± 51.1 µg/m3 and 72.7 ± 55.2 µg/m3 for Lahore, Peshawar, and Quetta during fall 2007, respectively. Wind speed and temperature have a negative correlation with the mass concentration of PM2.5. Diurnal profile for all the cities suggests an association of PM2.5 with vehicular traffic. Back trajectory analysis conducted using the NOAA HYSPLIT model indicates that air trajectories, during high pollution episodes, influencing the urban regions commonly originate from either western India, especially in summer as part of the prevailing monsoon circulation; or are located in eastern Afghanistan. The source areas in Western India i.e., states of Gujarat, Rajasthan and Punjab have high concentration of industrial activities and crop residue burning, and are likely sources of enhanced PM2.5 concentrations, in addition to the local sources.

Keywords: Pakistan; Fine particulate matter; Pollution; Meteorology

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.