Vimal Mehta 1,2, Supreet Pal Singh2, Rishi Pal Chauhan3, Gurmel Singh Mudahar2

  • 1 Deptt of Physics, M. M. University, Mullana (Ambala)-133 207, India
  • 2 Deptt of Physics, Punjabi University, Patiala- 147 001, India
  • 3 Deptt of Physics, National Institute of Technology, Kurukshetra- 136 119, India

Received: August 6, 2014
Revised: November 9, 2014
Accepted: April 6, 2015
Download Citation: ||https://doi.org/10.4209/aaqr.2014.08.0161  

  • Download: PDF


Cite this article:
Mehta, V., Singh, S.P., Chauhan, R.P. and Mudahar, G.S. (2015). Study of Indoor Radon, Thoron, Their Progeny Concentration and Radon Exhalation Rate in the Environs of Mohali, Punjab, Northern India. Aerosol Air Qual. Res. 15: 1380-1389. https://doi.org/10.4209/aaqr.2014.08.0161


 

ABSTRACT


Radon and its progeny are major contributors that deteriorate the indoor air quality and are the major source of radiation dose received by general population of the world. Keeping this in mind the environmental monitoring of radon-thoron and their progeny in dwellings of district Mohali, Punjab, India has been carried out. The radon-thoron twin dosimeter cups were used for the study. The study of the exhalation rate of the soil samples of Kharar, Kurali and Derabassi of the district Mohali and the sand samples available from the study area has also been carried out for the comparison purpose using can echnique. The aim of the study is the possible health risk assessment in the dwellings of this particular region for which data is not available in literature. The indoor radon concentration varied from 22.8 ± 0.7 Bq/m3 to 45.0 ± 2.2 Bq/m3 with an average of 33.7 Bq/m3 while the thoron concentration in the same dwellings varied from 1.7 ± 0.1 Bq/m3 to 27.6 ± 1.2 Bq/m3 with an average of 12.8 Bq/m3. Annual dose received by the inhabitants in the dwellings under study varied from 0.64 to 1.64 mSv with an average of 1.19 mSv. The radon mass and surface exhalation rates of the soil samples varied from 0.32 to 2.6 mBq/kg/h with an average of 1.36 ± 0.2 mBq/kg/h and from 7.3 to 58.2 mBq/m2/h with an average of 28.3 ± 5.1 mBq/m2/h respectively.


Keywords: Radon; Radon decay products; Thoron; Dwellings; Annual effective dose; Exhalation rate; Health effects


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

6.5
2021CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2021 Impact Factor: 4.53
5-Year Impact Factor: 3.668

Aerosol and Air Quality Research partners with Publons

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.