Takashi Fujimori1, Kohei Nishimura2, Kazuyuki Oshita1, Nobuo Takeda1, Masaki Takaoka 1

  • 1 Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8540, Kyoto, Japan
  • 2 JFE Engineering (M) Sdn. Bhd., Megan Avenue II, 12, Jalan Yap Kwan Seng, 50450, Kuala Lumpur, Malaysia

Received: March 30, 2013
Revised: July 9, 2013
Accepted: July 9, 2013
Download Citation: ||https://doi.org/10.4209/aaqr.2013.03.0100  

  • Download: PDF

Cite this article:
Fujimori, T., Nishimura, K., Oshita, K., Takeda, N. and Takaoka, M. (2014). Influence of the Properties of Macromolecular Carbon on de Novo Synthesis of PCDDs, PCDFs, PCBs, and Chlorobenzenes. Aerosol Air Qual. Res. 14: 1131-1141. https://doi.org/10.4209/aaqr.2013.03.0100



We examined the influence of the properties of macromolecular carbon on thermochemical de novo synthesis of toxic chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs), biphenyls (PCBs), and chlorobenzenes (CBzs). Six types of macromolecular carbons were prepared. Some activated carbon samples were modified by chemical solvents, such as nitric acid, hydrogen peroxide, sulfuric acid, and urea solutions, to change the properties of the activated carbon. We characterized six macromolecular carbons by surface area (8.8–1540 m2/g), free radicals (Ns = not analyzed to 67.0 × 1019 g–1, g = 2.0011–2.0098), and functional groups (O–H, C–H, C=O, C=C, C–O, and C–OH). Concentrations of aromatic-Cls at 300–400°C, such as PCDDs, PCDFs, PCBs, and CBzs, were clearly influenced by the type of macromolecular carbon. Their distribution between the ash/gas phases implied that increasing the surface area mainly enhanced the adsorption capacity of macromolecular carbon, while increasing the number of free radicals mainly enhance the reaction activity of macromolecular carbon. The PCDD/PCDF ratio suggested that various modifications of macromolecular carbon contributed to the generation of PCDDs in addition to the catalytic behavior of copper. Under most conditions, the surface area of macromolecular carbon did not have a strong correlation with the generation of PCDDs, PCBs, and CBzs, but it did show have a correlation with the generation of PCDFs. One of the destructive effects of aromatic-Cls resulted from the free radicals in macromolecular carbon. The C=O bond (ca. 1720 cm–1) functional group in macromolecular carbon had no strong correlation with the generation of aromatic-Cls, because free radicals had a destructive effect. The functionalities of ether (C–O) or phenolic OH (C–OH) in macromolecular carbon were causative factors in the generation of oxygen-containing aromatic-Cls, such as PCDDs and PCDFs.

Keywords: Functional group; Free radical; Surface area; Dioxins; Chlorobenzenes

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.