Mauro Scungio 1, Fausto Arpino1, Luca Stabile1, Giorgio Buonanno1,2

  • 1 Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via G. di Biasio 43, 03043 Cassino (FR), Italy
  • 2 Queensland University of Technology, GPO Box 2434, Brisbane Qld, 4001, Australia

Received: November 6, 2012
Revised: April 25, 2013
Accepted: April 25, 2013
Download Citation: ||https://doi.org/10.4209/aaqr.2012.11.0306  

  • Download: PDF


Cite this article:
Scungio, M., Arpino, F., Stabile, L. and Buonanno, G. (2013). Numerical Simulation of Ultrafine Particle Dispersion in Urban Street Canyons with the Spalart-Allmaras Turbulence Model. Aerosol Air Qual. Res. 13: 1423-1437. https://doi.org/10.4209/aaqr.2012.11.0306


 

ABSTRACT


The increased traffic emissions and reduced ventilation of urban street canyons lead to the formation of high particle concentrations as a function of the related flow field and geometry. In this context, the use of advanced modelling tools, able to evaluate particle concentration under different traffic and meteorological conditions, may be helpful.

In this work, a numerical scheme based on the non-commercial fully explicit AC-CBS algorithm, and the one-equation Spalart-Allmaras turbulence model, was developed to perform numerical simulations of fluid flow and ultrafine particle dispersion in different street canyon configurations and under different wind speed and traffic conditions. The proposed non-commercial numerical tool was validated through a comparison with data drawn from the scientific literature.

The results obtained from ultrafine particle concentration simulations show that as the building height increases the dispersion of particles in the canyon becomes weaker, due to the restricted interaction between the flow field in the street canyon and the undisturbed flow. Higher values of approaching wind speed facilitate the dispersion of the particles. The traffic effect has been evaluated by imposing different values of particles emission, depending on the vehicles type, with the lowest concentration values obtained for the Euro 6 vehicles, and the highest for High Duty Vehicles. A parametric analysis was also performed concerning the exposure to particles of pedestrians in different positions at the road level as a function of street canyon geometry, traffic mode, and wind speed. The worst exposure (1.25 × 106 part./cm3) was found at the leeward side for an aspect ratio H/W = 1, wind speed of 5 m/s when High Duty Vehicles traffic was considered.


Keywords: Turbulence; Ultrafine particles; Street canyon; Modelling


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

The Future Environment and Role of Multiple Air Pollutants

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.