Tripti Pachauri, Aparna Satsangi, Vyoma Singla, Anita Lakhani, K. Maharaj Kumari

  • Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282110, India

Received: October 3, 2012
Revised: January 15, 2013
Accepted: January 15, 2013
Download Citation: ||  

  • Download: PDF

Cite this article:
Pachauri, T., Satsangi, A., Singla, V., Lakhani, A. and Kumari, K.M. (2013). Characteristics and Sources of Carbonaceous Aerosols in PM2.5 during Wintertime in Agra, India. Aerosol Air Qual. Res. 13: 977-991.



PM2.5 samples were collected at traffic, rural and campus sites in Agra during Nov 2010 to Feb 2011 and characterized for carbonaceous aerosols. The average mass concentrations of PM2.5 were 308.3 ± 51.8 μg/m3, 91.2 ± 17.3 μg/m3 and 140.8 ± 22.3 μg/m3 at the traffic, rural and campus sites, respectively. The 24-h mass concentrations of PM2.5 were significantly higher than the limit of 60 μg/m3 prescribed in the National Ambient Air Quality Standards (Indian NAAQS) and 25 μg/m3 of those of the WHO (World Health Organization). The average concentrations of OC (organic carbon) and EC (elemental carbon) were 86.1 ± 5.2 and 19.4 ± 2.4 at the traffic site, 30.3 ± 12.9 and 4.0 ± 1.5 at the rural site and 44.5 ± 18.5 μg/m3 5.0 ± 1.4 μg/m3 at the campus one. The contributions of TCA (Total Carbonaceous Aerosol) at the traffic, campus and rural sites were found to be 52, 54 and 58% of PM2.5 mass, respectively. A significant correlation was observed between water soluble K+ and OC at the rural (R2 = 0.63) and campus (R2 = 0.53) sites compared to the traffic one (R2 = 0.35). This may be attributed to increased biomass burning emissions at the rural and campus sites. The concentrations of SOC (Secondary Organic Carbon) were estimated based on the minimum OC/EC ratio, and were found to be 15.3 ± 6.3, 8.2 ± 5.8 and 28.8 ± 15.8 μg/m3, accounting for 18, 24.7 and 60.7% of total OC at the traffic, rural and campus sites, respectively. The surface morphology of the particles was analyzed by scanning electron microscopy and energy- dispersive X-ray spectroscopy (SEM/EDX). The results indicated branched chain-like aggregates of carbon bearing spheres at the traffic and rural sites, while at the campus site carbon-rich and minerogenic (mineral dust) particles were the dominant ones.

Keywords: Organic carbon; Elemental carbon; PM2.5; SOC; SEM/EDX

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.