Jun Gao 1, Changsheng Cao1, Lina Wang2, Tianheng Song1, Xiang Zhou1, Jie Yang1, Xu Zhang1

  • 1 Institute of HVAC & Gas Engineering, School of Mechanical Engineering, Tongji University, Shanghai 200092, China
  • 2 School of Resource and Environment Engineering, East China University of Science and Technology, Shanghai 200237, China

Received: September 10, 2012
Revised: October 30, 2012
Accepted: October 30, 2012
Download Citation: ||https://doi.org/10.4209/aaqr.2012.09.0238  

  • Download: PDF

Cite this article:
Gao, J., Cao, C., Wang, L., Song, T., Zhou, X., Yang, J. and Zhang, X. (2013). Determination of Size-Dependent Source Emission Rate of Cooking-Generated Aerosol Particles at the Oil-Heating Stage in an Experimental Kitchen. Aerosol Air Qual. Res. 13: 488-496. https://doi.org/10.4209/aaqr.2012.09.0238



Cooking-generated particles represent one major indoor particulate pollutant that significantly affect indoor air quality as well as pose a risk to human health. Prediction of the spatial-temporal distribution of fume particles and individual inhalation exposure is highly dependent upon the source characteristics. This study aims to determine the emission rate of cooking-generated particles in the range from 0.1 to 10 μm, because this size is of most concern when considering indoor particle dynamics. The mass concentration and volume-based size distribution of particles in the range from 0.1 to 10 μm are measured under controlled conditions in a laboratory kitchen. Based on a mass balance model, the total emission rates of PM2.5 and PM10 are determined using the concentration decay rate derived from the measured concentration plus its changing curve with time. The size-dependent emission rate is further obtained by multiplying the total emission rate by the particle volume distribution. It is found that source strengths are highly sensitive to the oil type, whilst both the volume-distribution patterns and decay rate values exhibit less difference among the six types of vegetable oil examined in this work. The relative variance of source rate determined at time spans from 15 min to 2 h is less than 5.5%, and thus a short measuring period of 15 min is sufficient to derive a reliable emission rate. The results also show that the volume frequency of particles in the size range from 1.0 to 4.0 μm accounts for nearly 100% of the mass of PM10 in the oil-heating experiments. The size range and the associated size-based emission rates derived in this study can be applied as the source characteristics for further studies of indoor particle dynamics.

Keywords: Fume particle; Volume distribution; Decay rate; Emission rate; Indoor air quality

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.