Yu-Mei Hsu

  • Wood Buffalo Environmental Association, 100–330 Thickwood Boulevard, Fort McMurray, Alberta T9K 1Y1, Canada

Received: August 23, 2012
Revised: May 2, 2013
Accepted: May 2, 2013
Download Citation: ||https://doi.org/10.4209/aaqr.2012.08.0224  

  • Download: PDF


Cite this article:
Hsu, Y.M (2013). Trends in Passively-Measured Ozone, Nitrogen Dioxide and Sulfur Dioxide Concentrations in the Athabasca Oil Sands Region of Alberta, Canada. Aerosol Air Qual. Res. 13: 1448-1463. https://doi.org/10.4209/aaqr.2012.08.0224


 

ABSTRACT


The Athabasca Oil Sands Region (AOSR) in northeastern Alberta, Canada has attracted much international attention in recent years due to the increased level of oil sands operations. A passive sampling program was initiated in 1999 to monitor ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the AOSR for the estimation of the exposure of the forest monitoring sites and the characterization of temporal trends. Since 1999, highest concentrations of O3 and NO2 occurred in April and winter, respectively. The observed spring O3 maximum is common in the northern hemisphere. The higher winter-time NO2 concentrations were due to low atmospheric mixing height, stable atmosphere, and higher emissions during winter.

Sen-Theil trend analysis, a non-parametric analysis for temporal trending, determined that O3 concentrations from 2000 to 2009 did not change. NO2 concentrations increased slightly at three sites, and significantly increased at two sites closer to stationary and mobile sources. SO2 concentration was increasing at JP107 and was decreasing at JP101. SO2 concentrations did not increase at 4 other sites close to the major emissions. This suggests that SO2 emissions were likely stable.

Spatial analysis was conducted to characterize the concentration distribution in the region. The O3 concentrations were low near the emission sources (9.4 km) likely due to local O3 titration. Highest NO2 and SO2 concentrations were measured near the main source area. Generally, passively measured monthly average concentrations of O3, NO2 and SO2 stabilized at 20, 48 and 48 km from the main source area suggesting NO2 and SO2 emission influences were limited to < 50 km away from the major sources. However, one site (JP107) located near the Athabasca River Valley, 94 km north of the main source area, had higher SO2 and NO2 concentrations. This could be attributed to influence of valley flow, and/or to additional sources added in the region since 2007.


Keywords: Trend; Athabasca oil sands region; Passive sampler; Ozone; Sulfur dioxide; Nitrogen dioxide


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2021 Impact Factor: 4.53
5-Year Impact Factor: 3.668

The Future Environment and Role of Multiple Air Pollutants

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.