Chi-Ru Yang 1, Ta-Chang Lin2, Yen-Shun Peng3, Sun-Zone Lee1, Yih-Feng Chang4

  • 1 Department of Environmental Engineering and Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
  • 2 Department of Environmental Engineering National Cheng Kung University, Tainan 70101, Taiwan
  • 3 Department of Environmental Resources Management, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
  • 4 Institute of Hot Spring Industry, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan

Received: September 14, 2011
Revised: March 15, 2012
Accepted: March 15, 2012
Download Citation: ||https://doi.org/10.4209/aaqr.2011.09.0145  

  • Download: PDF


Cite this article:
Yang, C.R., Lin, T.C., Peng, Y.S., Lee, S.Z. and Chang, Y.F. (2012). Reducing Air Pollution Emissions from Burning Incense with the Addition of Calcium Carbonate. Aerosol Air Qual. Res. 12: 972-980. https://doi.org/10.4209/aaqr.2011.09.0145


 

ABSTRACT


A laboratory-scale study was performed to quantify the pollutant reduction effects from burning incense with the addition of CaCO3. Many studies have investigated the effects of burning incense on the quality of surrounding air, focusing primarily on particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). However, the reduction of PM and PAHs from burning incense has received little attention. In our past study, we investigated nine types of commercially available incense and found that incense with a higher CaCO3 content had lower PM and PAH emissions factors. Five to thirty percent of CaCO3 was added to Liao and Chen incense powder, which are popular incense materials. The experimental results indicate that the reductions in the emissions of PM and PAHs from burning incense increased with along with amount of CaCO3 additive. Mean PM reductions for 5.0%, 10.0%, 20.0%, and 30.0% CaCO3 were 11 ± 2%, 15 ± 3%, 27 ± 1%, and 41 ± 3%, respectively. Mean particle-phase PAHs (P-PAHs) reductions were 9 ± 9%, 15 ± 5%, 22 ± 1%, and 28 ± 1%, respectively, and 5 ± 6%, 21 ± 1%, 21 ± 3%, and 30 ± 2% for total benzo[a]pyrene equivalent concentration (total BaPeq), respectively. This study was performed to quantify the reduction of PM and PAH emissions from burning incense with increasing amounts of CaCO3. The findings of this study may serve as a guide to producing safer and less-polluting incense.


Keywords: Particulate matter; Polycyclic aromatic hydrocarbons; Incense; Calcium carbonate; Total benzo[a]pyrene equivalent concentration


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.