Lin Li, Da-Ren Chen

  • Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Box 1180, St. Louis, Missouri 63130, U.S.A.

Received: July 21, 2011
Revised: October 11, 2011
Accepted: October 11, 2011
Download Citation: ||https://doi.org/10.4209/aaqr.2011.07.0103 

  • Download: PDF


Cite this article:
Li, L. and Chen, D.R. (2011). Aerosol Charging Using Pen-Type UV Lamps. Aerosol Air Qual. Res. 11: 791-801. https://doi.org/10.4209/aaqr.2011.07.0103


 

ABSTRACT


A portable aerosol charger utilizing pen-type Hg lamps was constructed to investigate the particle charging process under UV irradiation. The charger primarily consisted of a quartz tube surrounded by four pen-type low-pressure Hg lamps and an ion trap located downstream of the quartz tube to remove excessive ions. The performance of the prototype UV charger at 5 L/min flow rate and with four UV lamps turned on using monodisperse silver (Ag) particles with diameters ranging from 7 to 30 nm was evaluated. As expected, the prototype UV charger provided higher particle charging efficiencies than corona-based unipolar chargers for Ag particles. To evaluate the effect of irradiation intensity on particle photocharging, the charging efficiencies and charge distributions for Ag particles ranged from 7 to 30 nm when the prototype was operated at an aerosol flow rate of 5 L/min for the cases of one, two, and four lamps turned on. The UV charging model with the photoemission based on the Fowler-Nordheim law was further applied to predict the charging performance of the UV charger at different operational conditions.


Keywords: Nanoparticle charging; UV charger; UV irradiation intensity


Latest Articles

Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank

Enter your email below to receive latest published articles in your field.