Hsiao-Lin Huang 1, Mei-Guei Lee2, Jen-Hsuan Tai1

  • 1 Institute of Industrial Safety and Disaster Prevention, Chia Nan University of Pharmacy and Science, No.60, Sec. 1, Erren Rd., Rende Dist., Tainan City 71710, Taiwan
  • 2 Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, No.60, Sec. 1, Erren Rd., Rende Dist., Tainan City 71710, Taiwan

Received: December 29, 2016
Revised: December 29, 2016
Accepted: December 29, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2011.07.0098  

  • Download: PDF


Cite this article:
Huang, H.L., Lee, M.G. and Tai, J.H. (2012). Controlling Indoor Bioaerosols Using a Hybrid System of Ozone and Catalysts. Aerosol Air Qual. Res. 12: 73-82. https://doi.org/10.4209/aaqr.2011.07.0098


 

ABSTRACT


As people spend a greater portion of their time indoors, the likelihood of exposure to biohazards in indoor air is increasing. This study developed a system to disinfect indoor bioaerosols while protecting occupants from direct exposure to ozone. This hybrid approach combines high concentrations of ozone generated by a non-thermal dielectric barrier discharge system, and an ozone decomposition unit using MnO2/Al2O3 and MnO2/AC catalysts. Four types of common bioaerosols were used to test the germicidal efficacy of 0–175 ppm ozone at a relative humidity of 30–70% and retention time of 1–10 s. The results indicate that the germicidal efficacy of ozone on E. coli, C. famata and P. citrinum spore bioaerosols increased with ozone concentration, relative humidity, and retention time; however, the process was less effective with the hardy endospores of B. subtilis. Germicidal efficacy of 90% was obtained for bioaerosols (two vegetative cells and one spore) using high concentrations of ozone at a relative humidity of 70% and exposure time of 10 s. Residual ozone in the tail gas was decomposed to undetectable levels using catalysts at a gas hourly space velocity of 3.287 × 103 1/h. The concentration of indoor bioaerosols (total bacteria and fungi) in a small office was reduced to below 50 CFU/m3 and ozone in the tail gas was reduced to undetectable levels following treatment for 2 h. The hybrid system of ozone disinfection and catalysts provides high germicidal efficacy while protecting occupants from direct exposure to ozone.


Keywords: Indoor air quality; Disinfection; Biohazard; Germicidal efficacy; Microorganism

Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.