Li-Kai Tu1,2, Yee-Lin Wu 1,2, Lin-Chi Wang 3,4, Guo-Ping Chang-Chien3,4

  • 1 Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
  • 2 Sustainable Environment Research Center, National Cheng Kung University, 1, University Road, Tainan, 70101, Taiwan
  • 3 Department of Chemical and Materials Engineering, Cheng Shiu University, 840, Chengching Road, Kaohsiung 833, Taiwan
  • 4 Super Micro Mass Research and Technology Center, Cheng Shiu University, 840, Chengcing Road., Kaohsiung 833, Taiwan

Received: May 26, 2011
Revised: August 9, 2011
Accepted: August 9, 2011
Download Citation: ||  

  • Download: PDF

Cite this article:
Tu, L.K., Wu, Y.L., Wang, L.C. and Chang-Chien, G.P. (2011). Distribution of Polybrominated Dibenzo-p-dioxins and Dibenzofurans and Polybrominated Diphenyl Ethers in a Coal-fired Power Plant and Two Municipal Solid Waste Incinerators. Aerosol Air Qual. Res. 11: 596-615.



In this study, the distributions of polybrominated dibenzo-p-dioxins (PBDD/Fs) and dibenzofurans and polybrominated diphenyl ethers (PBDEs) in the bottom residues of the combustion chambers (BR), the fly ashes from superheaters (SH), economizers (EC), semi-dry scrubbers (SDA), fabric filters (BF), fly-ash pits (FAP) and stack flue gases (SFG) of two municipal solid waste incinerators (MSWIs) and the bottom residue (BR), electrostatic dust precipitators (ESD), and stack flue gases (SFG) of a coal-fired power plant (TPP) were investigated. BR of combustion chambers exhibited the highest content of PBDEs and PBDD/Fs among all the units. The amount of PBDE mass found in bottom residues constituted 99.7% at MWSI-A, and 92.6% at MSWI-B and 75.1% at TPP of the total PBDE discharges, respectively; while the second highest PBDE mass observed in MSWI-A and MSWI-B was from SFG (0.146%) and EC (5.54%), respectively. In TPP, the PBDE distribution was 75.1% in BR, 12.5% in ESD, and 12.4% in SFG. The mean concentrations of PBDEs emitted from SFG of MSWI-A, and MSWI-B were 9.32 ng/Nm3, and 7.62 ng/Nm3, respectively; however, that of PBDE discharged from SFG of TPP was only 5.43 ng/Nm3. The dominant congener found from MSWI-A,MSWI-B and TPP, was BDE-209, accounting for 65.9%, 77.7%, and 77.6% of total PBDE concentrations in SFG, respectively; whereas BDE-206 (6.01%–6.36%) was the second highest congener. Meanwhile, the PBDE emission factors from the stack flue gases were 35.6 ± 10.9 μg/ton-waste at MWSI-A, 47.6 ± 29.4 μg/ton-waste at MSWI-B and 62.9 ± 10.9 μg/ton-coal at TPP of the total PBDEs, respectively; showing the PBDE emission rates and contributions of TPP to the ambient air are actually much higher than those of MSWIs, while the PBDE concentrations in SFG of TPP were lower than MSWIs’. Further investigations on the safety of BR reutilization and the impact of SFG from TPP are strongly advised.

Keywords: Polybrominated diphenyl ethers (PBDEs); Municipal solid waste incinerators; Coal-fired power plant; Stack flue gases; Ashes

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.