Lien-Te Hsieh 1,2, Cheng-Hsien Tsai3, Juu-En Chang4, Meng-Chun Tsao4

  • 1 Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, 1 Shuefu Fu Road, Pingtung 912, Taiwan
  • 2 Emerging Compounds Research Center (ECOREC), National Pingtung University of Science and Technology, 1 Shuefu Fu Road, Pingtung 912, Taiwan
  • 3 Department of Chemical and Material Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan
  • 4 Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan

Received: February 24, 2011
Revised: March 14, 2011
Accepted: March 14, 2011
Download Citation: ||https://doi.org/10.4209/aaqr.2011.02.0014  

  • Download: PDF


Cite this article:
Hsieh, L.T., Tsai, C.H., Chang, J.E. and Tsao, M.C. (2011). Decomposition of Methyl Tert-Butyl Ether by Adding Hydrogen in a Cold Plasma Reactor. Aerosol Air Qual. Res. 11: 265-281. https://doi.org/10.4209/aaqr.2011.02.0014


 

ABSTRACT


Methyl tert-butyl ether (MTBE) is extensively used as an oxygenate and octane enhancer in gasoline. Its release to the environment has generated great public and governmental concern. In this study, we give a brief review of the decomposition of air toxics by the application of radio frequency (RF) plasma reactors and then present our study on decomposition of methyl tert-butyl ether by adding hydrogen in a cold plasma reactor. Based on our references, there are four types of the application in the RF plasma reactors are discussed, including: (i) Application I.: Converting methane, decomposing carbon dioxide, ethoxyethane, and ethylene oxide; (ii) Application II.: Decomposing methyl chloride, 1,1-C2H2Cl2, and CH2Cl2; (iii) Application III.: Decomposing dichlorodifluoromethane, CHF3, CH2F2, CCl2F2, and BF3; (iv) Application IV.: Decomposing dichlorodifluoromethane, CH3SH, CS2, SF6, and SF6 + H2S mixture. Moreover, this study demonstrates the feasibility of applying a radio frequency (RF) plasma reactor for decomposing and converting MTBE. Experimental results indicate that the decomposition efficiency (ηMTBE) and the fraction of total input carbon converted into CH4, C2H2 and C2H4 (FCH4+C2H2+ C2H4) increased with the input power and decreased as both the H2/MTBE ratio and the MTBE influent concentration in the MTBE/H2/Ar plasma environment increased. Interestingly, applying radio frequency plasma to the decomposition of MTBE while adding hydrogen constitutes alternative method of decomposing and converting MTBE into CH4, C2H4, C2H2, iso-butane and iso-butene.


Keywords: Plasma; Decomposition; Methyl tert-butyl ether (MTBE); Radio-frequency (RF); Reaction


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.