Shui-Ping Wu , Xin-Hong Wang, Jin-Ming Yan, Meng-Meng Zhang, Hua-Sheng Hong

  • State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

Received: September 30, 2010
Revised: September 30, 2010
Accepted: September 30, 2010
Download Citation: ||  

  • Download: PDF

Cite this article:
Wu, S.P., Wang, X.H., Yan, J.M., Zhang, M.M. and Hong, H.S. (2010). Diurnal Variations of Particle-bound PAHs at a Traffic Site in Xiamen, China. Aerosol Air Qual. Res. 10: 497-506.



To improve our current understanding of the fate of particle-bound PAHs, which include potent mutagens and carcinogens, diurnal measurements of these compounds were carried out from 23 Oct to 31 Dec 2008 at a busy traffic site in Xiamen, China. The sum of 19 PAH concentrations showed a just noticeable day-night difference in the warmer period (from 23 Oct to 25 Nov) to a remarkable day-night difference in the colder period (from 26 Nov to 31 Dec). However, the average profiles of the 19 PAHs in the warmer and colder periods were very similar for both day and night samples. Atmospheric mixing seemed to have more influence on the diurnal variations in PAHs than photodecomposition resulting from solar radiation, because PAH concentrations showed negative correlation with air temperature but significantly positive correlation with the ratios of reactive to stable PAHs, such as benz[a]anthracene to chrysene and benzo[a]pyrene to benzo[e]pyrene. Based on the diagnostic ratios of indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[g,h,i]perylene and fluoranthene to fluoranthene plus pyrene, the results showed that no significant differences were observed in PAHs sources between the warm and cold periods and a combination of grass, wood or coal combustion and petroleum sources in airborne particles might be the most significant contributors of PAHs. Gas-phase PAHs were calculated based on the theoretical gas/particle partitioning coefficients for 19 PAHs and a high fraction of daily exposure was attributed to particle-phase PAHs in most cases. The excess lifetime cancer risk in colder period was generally higher than in the warmer period. The total uncertainties were computed based on the simpler average error transfer formula.

Keywords: Risk assessment; Xiamen; PAHs, Diurnal variations; Uncertainty analysis

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.