Benjamin Y.H. Liu1, Francisco J. Romay 1, William D. Dick1, Keung-Shan Woo1, Mihai Chiruta2

  • 1 MSP Corporation, 5910 Rice Creek Parkway, Suite 300, Shoreview, MN 55126, USA
  • 2 Cummins Inc., 1801 US Highway 51/138, Stoughton, WI 53589, USA

Received: March 31, 2010
Revised: March 31, 2010
Accepted: March 31, 2010
Download Citation: ||https://doi.org/10.4209/aaqr.2009.10.0062  

  • Download: PDF


Cite this article:
Liu, B.Y., Romay, F.J., Dick, W.D., Woo, K.S. and Chiruta, M. (2010). A Wide-Range Particle Spectrometer for Aerosol Measurement from 0.010 µm to 10 µm. Aerosol Air Qual. Res. 10: 125-139. https://doi.org/10.4209/aaqr.2009.10.0062


 

ABSTRACT


The Wide-range Particle Spectrometer (WPS™) is a recently introduced commercial instrument with the unique capability to measure size distributions of aerosols from 0.01 to 10 µm in diameter. The instrument includes a Scanning Mobility Spectrometer (SMS) comprised of a Differential Mobility Analyzer (DMA) and a Condensation Particle Counter (CPC) for particle measurement from 0.01 to 0.5 µm and a Laser Particle Spectrometer (LPS) for measurement in the ~0.4 to 10 µm range. These components are small enough to fit into a small portable cabinet (~26 kg) with all accompanying control hardware and electronics. No external pumps are required and power consumption is only about 150 W.

The DMA is calibrated with Standard Reference Materials (SRM) from the U.S. National Institute of Standards and Technology (NIST), including SRM 1691 and SRM 1963a. These are uniform size polystyrene latex (PSL) spheres available from NIST with mean diameters of 0.269 µm and 0.1018 µm respectively. The CPC has a dual reservoir design to prevent the working fluid from being contaminated by water due to moisture condensation in the condenser. The LPS is calibrated with four NIST-traceable PSL sphere sizes. Calibration curves are generated not only for PSL (real refractive index of 1.585), but also for discrete values real refractive index ranging from 1.30 to 1.60. This procedure allows the user to select the most appropriate curve for determination of the light-scattering-equivalent sphere size that takes into account the effect due to refractive index of real aerosols. The LPS has a wide-angle collection optics design to produce a monotonic response curve for routine measurement in the field.


Keywords: Condensation particle counter; Aerosol spectrometer; Differential mobility analyzer; Laser particle spectrometer


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

8.3
2023CiteScore
 
 
79st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2023 Impact Factor: 2.5
5-Year Impact Factor: 2.8

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.