Shu-Mei Chien1, Yuh-Jeen Huang1, Shunn-Cheng Chuang2, Hsi-Hsien Yang 3

  • 1 Department of Biomedical Engineering & Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
  • 2 Department of Air Quality Protection and Noise Control, Environment Protection Administration, Taipei 10042, Taiwan
  • 3 Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong, Taichung 413, Taiwan

Received: February 28, 2009
Revised: February 28, 2009
Accepted: December 29, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2008.09.0040  

  • Download: PDF


Cite this article:
Chien, S.M., Huang, Y.J., Chuang, S.C. and Yang, H.H. (2009). Effects of Biodiesel Blending on Particulate and Polycyclic Aromatic Hydrocarbon Emissions in Nano/Ultrafine/Fine/Coarse Ranges from Diesel Engine. Aerosol Air Qual. Res. 9: 18-31. https://doi.org/10.4209/aaqr.2008.09.0040


 

ABSTRACT


The influences of different blending percentages of biodiesel on the size distributions of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) are not well known. In this study, commercial pure petroleum-based diesel (D100) and three biodiesel blends of 20% (B20), 60% (B60), and 100% (B100) were tested in an engine operated on a dynamometer following the US transient-cycle test procedure. PM size distributions were measured with micro-orifice uniform deposit impactor (MOUDI) and Nano-MOUDI of 0.01-10 m aerodynamic diameter. The collected samples were extracted then analyzed for PAHs by GC/MS. The results revealed that PM emissions decrease apparently as the blending percentages of biodiesel increase. For D100, B20, B60 and B100, PAH emission factors were 3704, 2720, 1709 and 1514 μg/Hph (horsepower per hour), respectively. Increasing the biodiesel blending percentage reduces the emission of both PAHs and PM. As the blending fractions of biodiesel increased, the PM emissions for the four size ranges decreased. The reductions were significant especially for ultrafine (41.3%) and fine (44.8%) PM. The PAH mass was 32.5%, 32.6%, 34.5%, 30.0% in the ultra-fine size range and 23.8%, 24.3%, 29.2%, 34.5% in the nano size range for D100, B20, B60 and B100, respectively. The addition of biodiesel would cause higher percentages of ultra-fine and nano particulates in exhaust gas. For most biodiesel blending mixtures in the four size ranges, the percentages of PAH emission reduction were higher than those of PM emission. The reduction percentages reached 45.1% and 63.7% for B60, 66.5% and 68.3% for B100, respectively in ultrafine and fine size ranges. The BaPeq emission factors for B100 were 27.2, 49.5, 74.2 and 13.0 g/Hph in nano, ultrafine, fine and coarse size ranges. Biodiesel can reduce both PAH emission factors and the PAH corresponding carcinogenic potency in the full size ranges.


Keywords: Size distribution; Diesel engine; Emission factor; Engine dynamometer; PAH corresponding carcinogenity


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2021 Impact Factor: 4.53
5-Year Impact Factor: 3.668

The Future Environment and Role of Multiple Air Pollutants

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.