Mikhail Titov , Andrew Sturman

  • Centre for Atmospheric Research, Department of Geography, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

Received: May 31, 2008
Revised: May 31, 2008
Accepted: May 31, 2008
Download Citation: ||https://doi.org/10.4209/aaqr.2008.02.0006  

  • Download: PDF

Cite this article:
Titov, M. and Sturman, A. (2008). Evaluation of Proposed Winter PM Concentration Reduction Strategies Using the MM5 and CAMx4 Modelling System - Christchurch, New Zealand, 2005–2013. Aerosol Air Qual. Res. 8: 201-217. https://doi.org/10.4209/aaqr.2008.02.0006



Mesoscale Model (MM5) and Eulerian Comprehensive Air quality Model (CAMx4) were used to evaluate dispersion of particulate matter (PM) generated by “Total” emissions for Christchurch (New Zealand) for winter 2005. “Total” emissions consist of the “Domestic”, “Transport” and “Industry” emissions. A composite chemical scenario generated from transport-related (day-time) and domestic-related (night-time) chemical scenarios was shown to be an optimal chemical split of input gridded emissions for predicting PM concentrations with minimal error when compared with ambient data. Reduction of gridded emissions of fine (PM2.5) and total (PM10) aerosol from domestic and transport sources can be achieved by linear reduction of the PM emissions in the emissions groups, as well as by non-linear reduction in the groups by varying the percentage of each chemical component of the scenario used to chemically split the PM input gridded emissions. Results of comparison of the linear and non-linear reduction for winter 2005 heavy smog episodes support the reliability of the 1999 inventory. The predicted linear and non-linear reduced PM values belong to the same population with correlation coefficients of 0.88 to 0.98. Based on these results, a sequence of experiments has been conducted to evaluate the potential decrease of PM winter concentrations over the 2005–2013 time period, using proposed reduction of PM winter emissions (in both the “Domestic” and “Transport” groups) using the linear reduction scheme. Two different abatement strategies outlined by the New Zealand Ministry for the Environment (MfE) to reduce aerosol concentrations and to achieve compliance with the PM reduction plan (target year 2013) were studied numerically using proposed aerosol emissions reductions.

Keywords: MM5-CAMx4; PM10; Complex chemical scenario; Linear and non-linear reduction; Christchurch; SLiP-CLiP

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.