Hsi-Hsien Yang 1, Pei-Chuan Chen1, Lien-Te Hsieh2, Min-Ching Lin1, Kuo-Lin Huang3

  • 1 Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufeng, Taichung 413, Taiwan
  • 2 Department of Environmental Science and Engineering, Pingtung University of Science and Technology, 1, Hseuh Fu Road, Neipu, Pingtung 912, Taiwan
  • 3 Center of General Education, Chang Jung Christian University, Kway Jen, Tainan 711, Taiwan

Received: May 31, 2003
Revised: May 31, 2003
Accepted: May 31, 2003
Download Citation: ||https://doi.org/10.4209/aaqr.2003.06.0004  

  • Download: PDF

Cite this article:
Yang, H.H., Chen, P.C., Hsieh, L.T., Lin, M.C. and Huang, K.L. (2003). Characteristics of Atmospheric Metals during Dry Monsoon Season in the Coastal Region of Western Taiwan. Aerosol Air Qual. Res. 3: 29-39. https://doi.org/10.4209/aaqr.2003.06.0004



his study investigated the characteristics (elemental concentrations, size distributions, and dry deposition flux) of aerosol particles in the coastal region of western Taiwan during the dry monsoon (fall and winter) season. Factor analysis results show that resuspended soil dust is a significant source of particles. However, factor analysis is unable to define specific emission sources of noncrustal metals, probably because these metals are mixed by long-distance transportation, regardless of their sources. On average, coarse mode particles (with aerodynamic diameters of larger than 1.0 μm) contribute 66% of the total particle mass. These coarse particles represent 53%, 64%, 62%, and 44% of the mass of elements Al, Ca, Fe, and Ti, respectively. Coarse particles predominate dry deposition fluxes because the average percentages of dry deposition fluxes attributed to fine particles are only 0.2%, 0.2%, 0.18%, 0.22% and 0.19% of the total particle mass, the Al mass, the Ca mass, the Pb mass and the Ni mass, respectively. Both atmospheric concentrations and dry deposition fluxes of Al, Ca, Fe, Mn and Sr are strongly influenced by crustal sources. For Pb, Zn, Ni, Ba, Cu and Cr, the parent aerosol is soil-oriented but the dry deposition is not. Neither the parent aerosol nor the dry deposition of V and Cd is influenced by crustal sources. Enrichment factors of most metal crust elements are considerably lower in dry deposition than in the parent aerosol. Fractionation factor analysis results show that the crustal component of a metal element in a parent aerosol is fractionated from the atmosphere by a dry deposition sequence. Although the noncrustal sources are not important in dry deposition, noncrustal elements can be easily fractionated between particles and dry deposits. Among the elements investigated, Pb had the highest fractionation factor of 12.1.

Keywords: Metal; Size distribution; Dry deposition; Enrichment factor

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.