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ABSTRACT 
 

This study employs principal component analysis to identify fugitive river dust episodes over Zhuoshui River in 
Taiwan. The scores of the first unrorated principal component were applied as indicators for screening the dust episodes; 
this component explains 65% of the total variance of the daily PM10 concentrations at monitoring stations by Zhuoshui 
River. As the other principal components contributed less than 13% of the PM10 concentration, they were not suitable 
indicators of air pollution episodes. The number of days exceeding the National Ambient Air Quality Standard (NAAQS) 
for PM10 was used as indicators to evaluate the effectiveness of the component scores of the first principal component. 
Furthermore, air pollution episodes resulting from dust storms and transboundary pollution rather than river dust were 
excluded. The meteorological parameters, synoptic weather, PM10 concentrations, and principal components of the fugitive 
river dust episodes over Zhuoshui River were also analyzed as references for forecasting fugitive river dust episodes and 
implementing related air quality management.  
 
Keywords: Principal component analysis; Synoptic weather; Fugitive river dust. 
 
 
 
INTRODUCTION 
 

In Taiwan, the base flow of certain rivers has dropped 
sharply because of topographic characteristics of drainage 
basins, climate change, water resource allocation, watershed 
management, and riverbank reclamation and development. 
After the 1999 Jiji earthquake, riverbeds were raised and 
exposure of downstream riverbeds increased. Furthermore, 
after typhoons, a large amount of debris is flushed down 
rivers from upstream; this occurs during the northeast 
monsoon season, resulting in substantially elevated levels 
of dust emissions. According to air quality monitoring 
conducted by the Taiwan Environmental Protection 
Administration (TEPA), dust episodes primarily occur 
from October to April of the following year. In addition to 
reducing the quality of life of and causing inconvenience 
for residents of downwind areas, dust episodes may affect 
residents’ physical and mental health. As well as long-term 
changes in the natural environment, possible causes of 
river dust include part of the riverbed gravel being exposed 
when a dry spell occurs during a strong northeast monsoon 
in winter; moreover, when farmers do not suppress dust 
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carefully, river dust may be generated when the farmers 
use riverbanks during periods of fallowing, planting, and 
turning. Recently, numerous river dust-related grievances 
have been filed with the Taiwanese government in the 
surrounding basins of the Zhuoshui, Beinan, Daan, and 
Dajia Rivers, indicating that river dust emissions are a 
serious problem. Take Syuguang Station as an example, a 
river dust monitoring station along the Zhuoshui River; the 
maximum daily average concentration of PM10 (particulate 
matter of 10 µm in diameter) appeared on October 22, 
2013 (417 µg m–3), during which the maximum 1-hour 
concentration was 1102 µg m–3. 

Screening for episodes of air pollution is essential 
preparation work for formulating regulations on air pollution, 
air quality simulation, and air quality management. In 
particular, simulating secondary air pollutants and related 
topics require great resources to process the complex physical 
and chemical reactions involved. Simulation calculations 
can be simplified and time saved by using representative 
air pollution episodes. Additionally, verifying the simulation 
results of air quality models through air quality monitoring 
data can facilitate analysis and understanding of the 
causality between numerous factors such as air quality, 
weather, pollution sources, and topography. Conventional 
screening of air pollution scenarios begins with classifying 
meteorological patterns and preparing relevant statistics. 
The classification of meteorological patterns must rely on 
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meteorological data and the professional capability of 
meteorological experts. However, because the determination 
of classification methods and methods of expert assessment 
are not unified, the classification of meteorological patterns 
cannot objectively demonstrate the statistically extreme 
concentration of pollutants. The statistical methods used for 
meteorological patterns often adopt extreme values and the 
exceedances of ambient air quality as screening standards. 
When using extreme values, the statistical methods often 
cannot derive consistent results for numerous monitoring 
stations due to their differing characteristics. 

Regarding the classification of meteorological patterns, 
the United States Environmental Protection Agency (U.S. 
EPA, 1991) selected meteorological conditions that were 
prone to high ozone and then selected the 3 days with the 
most severe ozone pollution levels in each meteorological 
pattern to define an ozone episode. Cassmassi (1999) used 
synoptic weather patterns and atmospheric stability to 
establish the Meteorological Potential of Atmospheric 
Pollution (PMCA) index, and adopted multivariate regression 
tools to predict PM10 episodes. Perez and Reyes (2002) 
used a neural network to predict PM10 episodes and found 
that temperature difference between day and night was a 
crucial factor in specific meteorological patterns. Regarding 
statistical research on monitoring values, Ames et al. (1985) 
selected episodes based on a frequency of not more than 
10 times in 3 years (3 times a year); permissible concentration 
was also used to determine an episode. Meyer et al. (1997) 
attempted to simulate the maximum 8-hour ozone values 
from June 1 to August 31, 1987, using the Regional Oxidant 
Model, and selected meteorological conditions with high 
concentrations of pollutants, identifying these as ozone 
episodes. However, the three-dimensional grid air quality 
model entails high resource costs, which is unsuitable as a 
tool for determining an immediate pollution episode. Using 
the aforementioned meteorological classifications, extreme 
values statistical methods, and air quality models is not 
feasible for instantly selecting appropriate and statistically 
representative pollution scenarios. In terms of using statistical 
methods to screen pollution episodes, Yu and Chang (2000) 
and Yu (2013) adopted principal component analysis (PCA) 
to screen ozone pollution and PM10 episodes, respectively. 
Kuebler et al. (2002) used classification and regression 
tree analysis to screen ozone episodes on the Swiss Plateau. 
Beaver and Palazoğlu (2006) adopted K-means cluster 
analysis to screen ozone episodes in California. Zhang et 
al. (2014) used PCA and a nonparametric T2 control chart 
to predict episodes of over-standard ozone concentrations. 
Sun et al. (2015) predicted over-standard ozone episodes by 
adopting generalized linear mixed effects models (GLMMs). 
In the same study, the researchers compared the difference 
between linear regression models, generalized linear models, 
multilayer perceptron, and support vector machines, and 
found that GLMMs provided predictions with lower 
prediction errors and more correct over-standard ozone 
episodes for various weather patterns. 

In the field of air pollution research, PCA is an effective 
and objective data analysis tool that is often used to 
simplify variables (Yu and Chang, 2006; Dai et al., 2015; 

Iodice et al., 2016; Yao et al., 2016; Chen et al., 2017), 
identify sources of pollution (Viana et al., 2006; Shi et al., 
2009; Deka et al., 2014; Huang et al., 2015; Luo et al., 
2015; Mari et al., 2016; Arhami et al., 2017), classify 
meteorological patterns (Maheras, 1984; Maryon and Storey, 
1985; Eder et al., 1994; Cheng and Lam, 2000), and evaluate 
model diagnostics (Eder et al., 2014; Li and Wen, 2014). 
Researchers can use large amounts of existing monitoring 
data to instantly select statistically representative air pollution 
scenarios and, in particular, provide consistent high 
concentrations of air pollutants at most stations. These data 
can serve as a decision-making reference for formulating 
future strategies on air quality management to screen for 
air pollution episodes. The PCA has two advantages; first, 
it simplifies the relevant variables of air pollution to 
achieve economic effectiveness; and second, for screening 
pollution episodes, it exhibits more objective statistical 
representativeness than the meteorological classification. For 
screening river dust episodes, this study adopted the research 
method of Yu and Chang (2000) and Yu (2013). Based on 
air quality monitoring data, this study adopted PCA to 
screen pollution episodes, and then analyzed the air quality 
and meteorological characteristics of dust episodes. Finally, 
the appropriateness of the screening process was evaluated. 
 
RESEARCH METHODS 
 
Air Quality Data 

The Taiwan Air Quality Monitoring Network was 
officially launched by the TEPA in September 1993. To 
date, 76 general stations, 63 regular stations, 4 industrial 
stations, 2 national park stations, 4 background stations, 
and 6 traffic stations have been installed. The following five 
stations are located along the Zhuoshui River basin: Jushan, 
Douliou, Lunbei, Mailiau, and Taishi. The monitoring 
parameters are SO2, CO, O3, PM10, NO, NO2, NMHC, 
THC, PM2.5, wind speed, wind direction, temperature, and 
relative humidity. The Zhuoshui River is the longest river 
in Taiwan with the largest amount of sediment, and its 
upstream tributaries carry a large amount of sediment from 
the mountains, depositing into the estuary (Dadson et al., 
2003). Its estuary is a wide and braided channel with 
numerous exposed sandbars. During the winter dry spell, 
these sandbars easily form a large bare area. Coupled with 
the prevalence of the northeast monsoon, PM10 levels are 
elevated by wind, leading to serious river dust disasters in 
the downwind areas of the south bank of the Zhuoshui 
River. In Taiwan, river dust episodes usually occur during 
the dry spell of the northeast monsoon season (from October 
to April of the following year). In addition to general air 
quality stations, the TEPA has established automatic PM10 
monitoring equipment near rivers that commonly have 
fugitive river dust to understand river dust conditions and 
forecast air quality. High PM10 concentrations are likely to 
be detected by the monitoring stations near riverbeds 
because dust accumulated on the riverbed generates dust 
emissions when blown by strong wind. River dust data 
measured by a monitoring station can only represent the 
influence of dust in the local area and cannot represent 



ARTICLE IN PRESS 
 
 

Chang et al., Aerosol and Air Quality Research, x: 1–12, xxxx 3

regional air quality. The TEPA established two stations at 
Yisian and Syuguang Elementary Schools. Along the 
Zhuoshui River basin, five parameters are monitored: PM10, 
wind speed, wind direction, temperature, and relative 
humidity. To simultaneously evaluate the effect of river 
dust on air quality, the air quality monitoring data of this 
study were taken from the EPA’s general and river dust 
stations from 2011 to 2017. The target area was the 
Zhuoshui River basin, and the following seven stations 
were included: Jushan, Douliou, Yisian, Syuguang, Lunbei, 
Mailiau, and Taishi (Fig. 1). 

This study’s primary tasks were as follows: 
1. To screen river dust episodes of the Zhuoshui River: 

This study employed PCA of multivariate statistics to 
analyze data from the TEPA’s air quality and river dust 
monitoring stations for the Zhuoshui River basin from 
2011 to 2017 (data from the river dust monitoring 
stations began from 2011). The river dust monitoring 
stations only recorded PM10 data; therefore, PM10 was 
the research target and PM2.5 was excluded. 

2. To mitigate the effects of dust storms and foreign 
pollution episodes on the screened river dust episodes: 
Affected by dust storms in Mongolia and foreign air 
pollution, the PM10 concentration can increase sharply 
in a short period. Therefore, this study compared dates 
when dust storms and foreign pollution affected Taiwan 
and removed PM episodes that may have been caused 
by dust storms and foreign pollution. 

3. To evaluate the appropriateness of episodes for statistical 
representativeness. Existing data of synoptic weather 
patterns, meteorology, and PM10 concentrations were used 
to evaluate the appropriateness of pollution episodes. 

 
Principal Component Analysis 

Monitoring data from air quality stations were analyzed 
from the EPA’s air quality stations. The data period was 

from 2011 to 2017, and the daily average PM10 value was 
taken as the sample value. The data dimension of PM10 
could be treated as a collection of time series of 7 vectors 
(7 stations × 2557 days). Subsequently, the monitoring 
data were normalized using the following equation: 
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where Zik is the score of the kth Z of station i; Cik is the kth 
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relationship between the standardized Z-score and the 
nonrotating principal component value is as follows: 
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where Lij is the factor loading of the jth principal 
component of station i; and Pjk is the component score of 
the kth variable in the jth principal component. The score of 
the principal component can be derived using the inverse 
matrix of the aforementioned formula: 
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where λj is the eigenvalue of the jth principal component 
and also represents the variance of the jth principal 
component. All of the principal components are arranged 
based on the order of their explained variance from greatest 
to least; therefore, using the first few principal components 
enables the grasping of most of the variance in the entire 
sample space and achieves the simplification of variables. 

 

 
Fig. 1. Locations of ambient air quality monitoring stations over Zhuoshui River. 
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The principal components of these linear combinations 
exhibit not only the smallest variance in their components, but 
also the maximum individual differences of the individual 
components. Therefore, the first principal component can 
explain the maximum variation in the concentration field. 
This study screened appropriate river dust episodes using 
the characteristics of the first principal component. 

 
RESULTS AND DISCUSSIONS 
 
Geographical Distribution of PM10 Concentrations 
during Dry Season 

The highest monthly average of PM10 daily average 
values (Fig. 2) from the monitoring stations in the 
Zhuoshui River basin occurred in November, followed by 
December and March. The monthly mean PM10 during the 
dry season at all monitoring stations was substantially 
higher than that during the wet season. The difference in 
the monthly average concentrations during the wet and dry 
seasons was approximately 30–45 µg m–3. The monitoring 
results from the river dust monitoring stations at Yisian 
and Syuguang Elementary Schools were compared, as 
shown in Fig. 3(a). At Syuguang, the cumulative probability 
density distribution indicated that differences in PM10 
concentration during wet and dry seasons at 25%, 50%, 
and 75% cumulative probability were 21, 30, and 40 µg m–3, 
respectively; at Yisian, they were 21, 31, and 40 µg m–3, 
respectively. Notably, the difference in extremely high 
PM10 concentrations at Syuguang was much higher than 
those at Yisian. According to the locations of the stations 
and the Zhuoshui River, both stations were located on the 
south bank of the river. From the difference in PM10 
concentrations between wet and dry seasons, the difference 
was consistent at less than 90% cumulative probability; 
however, for extremely high PM10 concentrations, the river 
dust exhibited greater influence at Syuguang than at Yisian. 

For the differences in PM10 concentrations between wet 
and dry seasons at the TEPA’s general stations, the two 
sites exhibiting the largest difference—Taishi and Mailiau—
were selected for comparison (Fig. 3(b)). The cumulative 
probability density of difference in PM10 concentration 
during the wet and dry seasons at Taishi were 19, 26, and 
30 µg m–3 at the cumulative probabilities of 25%, 50%, 
and 75%, respectively; those at Mailiau were 25, 33, and 
37 µg m–3, respectively. However, the cumulative probability 
density of 90% and 95% for PM10 difference (the difference 
in PM10 concentrations for wet and dry seasons) were 37 
and 56 µg m–3 in Taishi; and 42 and 80 µg m–3 in Mailiau. 
Compared with the aforementioned seven stations, river dust 
was found to exhibit the greatest influence on the closest 
stations at Syuguang and Yisian on the south bank of the 
Zhuoshui riverbed, followed by the Mailiau and Taishi 
Stations. 

 
PCA 

PCA was performed based on the daily average PM10 
concentration from the seven stations. The results (Table 1) 
showed that the eigenvalues of the first three principal 
components were 4.57, 0.89, and 0.55, respectively, and 
the explanation for the concentration variance was 65.3%, 
12.7%, and 7.9%, respectively. Therefore, the first unrotated 
principal component accounted for 65.3% of the variance 
in PM10 concentration. The factor loading value represented 
the correlation between the principal component and each 
station. From the factor loading of each station and the first 
principal component (Table 2), the top three stations 
exhibiting the highest factor loadings of the first principal 
component were Douliou (0.888), Lunbei (0.848), and 
Taishi (0.834). The factor loading of each station and the 
first principal component was higher than 0.72. For the 
absolute value of the factor loading of the second principal 
component, only Jushan exhibited a value higher than 0.5.
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Fig. 2. The monthly mean PM10 concentrations of monitoring stations. 
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(a) Syuguang and Yisian 
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(b) Taishi and Mailiau 

Fig. 3. Distribution of daily mean PM10 concentrations in dry and wet seasons. 

 

Table 1. Eigenvalues and explained variances for principal 
components. 

Principal 
Component 

Eigenvalues 
Explained 
variances (%) 

1 4.57 65.3 
2 .89 12.7 
3 .55 7.9 
4 .32 4.6 
5 .29 4.1 
6 .23 3.3 
7 .14 2.0 

 

If the first unrotated principal component exhibited a 
high value, the concentration of all stations would collectively 

increase. Therefore, to understand harmful river dust 
episodes, the number of exceedances (in 1 day, if one 
station detected a PM10 concentration higher than daily 
mean PM10 standard, the number of exceedances was 1; if 
it was two stations, the number was 2) for PM10 was 
selected and the component scores of the first principal 
component were compared. As for the standard, this study 
selected two criteria: 150 and 125 µg m–3 (150 was STN1 
and 125 was STN2). According to the results in Fig. 4, the 
higher the component score of the first principal component, 
the higher the numbers of exceedances there were. The 
results of the analysis were as follows: 
1. The component score of the first principal component 

that was higher than 1 accounted for 13.5%, and 
could screen for 78.9% of exceedances with PM10 
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Table 2. Factor loadings between monitoring stations and principal components. 

Stations 
Components 

1 2 3 4 5 
Syuguang .783 .260 –.497 .022 .178 
Yisian .829 –.274 –.200 .132 –.414 
Douliou .888 .082 .085 –.293 –.116 
Lunbei .848 –.352 –.142 .111 .230 
Taishi .834 .330 .135 –.267 .019 
Mailiau .723 .490 .314 .367 –.009 
Jushan .739 –.515 .351 –.004 .138 

 

 
Fig. 4. Relationship between PC1 score and percentage of exceedance for daily PM10 standard and average numbers of 
exceeding daily PM10 standard. 

 

concentrations exceeding 125 µg m–3. The average 
number of exceedances was 1.89. The component score 
could screen for 85.0% of exceedances with PM10 
concentrations exceeding 150 µg m–3, and the average 
number of exceedances was 0.88. 

2. The component score of the first principal component 
that was higher than 2 accounted for 3.30% and could 
screen for 42.3% of exceedances with PM10 
concentrations exceeding 125 µg m–3. The average 
number of exceedances was 4.14. The component 
score could screen for 60.4% of exceedances with 
PM10 concentrations exceeding 150 µg m–3, and the 
average number of exceedances was 2.55. 

In addition to assess the relationships between component 
scores of the first principal component and numbers of 
PM10 episodes detected by monitoring stations, this study 
evaluated synoptic weather patterns (Soong et al., 2005), 
wind speed, wind direction, height of mixing layer (Air 
Quality Modeling Center, TEPA, 2018), and ventilation 
index (wind speed recorded in Wuqi Weather Station, 
height of mixing layer in CWB stations; Air Quality 
Modeling Center, TEPA, 2018). Therefore, according to 
existing monitoring data, parameters such as the PM10 
concentration, ventilation index, and height of mixing layer 

exhibited low degrees of correlation. No moderate positive 
correlation (0.4–0.7) was found among these parameters. 
The correlation between wind speed, wind direction, and 
PM10 concentration was investigated. The number of 
exceedances for PM10 standard in each year was compared, 
and the highest number of exceedances occurred in 2013 
(100 times) and 2014 (121 times). The station with the most 
severe PM10 concentration in 2013 was Syuguang (23 times). 
The highest PM10 concentration recorded by Syuguang was 
in October. Therefore, the hourly concentration, wind 
speed, and wind direction in October 2013 were analyzed 
to realize correlations between these parameters. The most 
severe PM10 episode detected by Syuguang in October 
2013 was October 21–27. During this period, the air quality 
was also affected by Typhoon Francisco and Typhoon 
Lekima. The relationship between the hourly PM10 

concentration and wind speed at Syuguang was analyzed 
during these two selected periods. The relationship between 
hourly PM10 concentration and wind speed at Syuguang in 
October 2013 (Fig. 5(a)) and October 21–27, 2013 (Fig. 5(b)), 
demonstrated that the hourly PM10 concentration and wind 
speed did not exhibit favorable linear or quadratic 
correlations. The relationship between hourly wind direction 
and hourly PM10 concentration at Syuguang in October 
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2013 and the average PM10 concentration at every time 
period are shown in Figs. 5(c) and 5(d). The hourly wind 
direction in Fig. 5(c) shows that in October 2013, winds 
with PM10 concentrations higher than 200 µgm–3 were 
from the north, northeast, and northwest, whereas PM10 
concentrations higher than 400 µg m–3 were only from the 
north and northwest. Syuguang is located on the south bank 
of the Zhuoshui River; thus, the air quality at Syuguang 

was obviously affected by fugitive river dust. As for the 
periods of high PM concentration and high wind speed 
(Fig. 5(d)), they all occurred at approximately 15:00 and 
16:00. Therefore, high wind speeds resulted in high PM10 
concentrations during river dust episodes. 

To evaluate the effectiveness of screening river dust 
episodes, daily mean PM10 values exceeding 125 and 
150 µg m–3 were compared. The numbers of exceedances 
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(d) the realtioship between wind speed and PM10 levels at distinct hours 

Fig. 5. Relationships between hourly PM10 concentrations and meteorological parameters at Synguang Station (July, 2013). 
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for PM10 standard over 125 µg m–3, which was more 
statistically representative (the number of exceedances was 
497 in 2011–2017) than 150 µgm-3. The primary stages of 
principles for screening river dust episodes are as follows: 
(1) During the monitoring period, 1 day occurs where the 
component score of the first principal component is higher 
than 3. (2) Dust storms and transboundary pollution are 
eliminated. (3) The component score of the first principal 
component is higher than 1 for 5 consecutive days. 

According to the first stage, the total number of days that 
the score of the first principal component was higher than 3 
was 18 days. The results of screened PM10 concentrations 
at stations are shown in Table 3. The highest score of the 
first principal component was found on January 21, 2014, 
and the component score of the first principal component 
was 6.05. The daily average PM10 concentration value was 
345 µg m–3 at Syuguang and 368 µg m–3 at Taishi. For the 

second stage, the dates of dust storms and transboundary 
pollution were compared. During the 18 days, except for 
October 22, October 25, and October 13, 2017, which were 
affected by the three typhoons Francisco, Lekima, and 
Khanun, respectively, the high PM10 concentrations on the 
remaining dates were caused by transboundary pollution. 
According to the third stage, river dust episodes that 
exhibited a component score of the first principal component 
higher than 1 for 5 consecutive days were selected. 
Therefore, only the dust episodes during October 22–26, 
2013, could be selected. To provide multiple choices, the 
score of the first principal component was modified to be 
higher than 2, enabling three alternative episodes to be 
selected (Table 4). Synoptic weather patterns were an 
essential factor that affected air quality; the cross-correlation 
among PM10 concentrations, principal components, and 
synoptic weather patterns was explored. The monitoring

 

Table 3. Fugitive river dust episodes over Zhuoshui River whose component scores of the first component are over 3. 

Date Syuguang Yisian Douliou Lunbei Taishi Mailiau Jushan PC1 
2013/2/25 172.2 197.5 175.3 186.3 121.5 126.6 161.3 3.85 
2013/10/22 417.0 96.3 192.8 95.7 127.0 155.7 80.0 3.36 
2013/10/25 276.0 114.6 185.0 94.6 214.5 168.2 84.9 3.51 
2013/11/17 209.8 99.7 161.2 127.3 245.0 179.6 111.3 3.66 
2013/11/18 154.6 107.5 141.2 135.0 238.4 144.1 126.0 3.30 
2013/11/20 216.3 188.9 157.8 163.2 120.4 124.8 127.5 3.45 
2013/12/27 243.1 173.3 230.3 159.2 193.1 183.4 142.8 4.79 
2014/1/4 165.7 179.8 164.2 140.8 141.5 163.5 121.0 3.38 
2014/1/5 149.8 155.5 159.0 159.9 149.3 148.2 130.5 3.31 
2014/1/18 415.6 137.1 263.1 128.1 215.0 215.5 102.3 5.28 
2014/1/21 345.4 142.5 246.2 132.0 367.9 224.1 113.3 6.05 
2015/2/5 252.1 124.9 175.9 112.4 135.0 223.5 106.3 3.44 
2015/11/26 400.5 194.7 227.2 57.4 139.4 189.5 49.4 3.85 
2015/12/16 259.8 163.3 181.4 117.0 138.2 169.1 106.7 3.51 
2016/12/27 384.7 54.8 238.5 77.2 88.3 217.0 48.2 3.02 
2017/10/29 333.7 165.1 47.3 208.1 238.6 71.4 153.5 3.75 
2017/10/30 299.0 165.5 53.4 173.5 185.9 63.6 138.8 3.00 
2017/11/4 264.4 202.3 33.6 190.3 211.3 38.9 166.8 3.19 

 

Table 4. The screening results of fugitive river dust episodes over Zhuoshui River. (daily mean PM10, µg m–3) 

Items Date Syuguang Yisian Douliou Lunbei Taishi Mailiau Jushan 
1 2017/10/12 58.5 40.8 51.3 55.8 90.3 86.7 55.4 
1 2017/10/13 289.3 63.1 41.5 230.8 145.2 129.8 42.7 
1 2017/10/14 29.4 23.6 24.6 19.6 26.1 32.8 17.7 
1 2017/10/15 17.8 21.9 15.0 16.0 ** 28.3 13.4 
1 2017/10/16 35.8 30.7 33.9 38.0 ** 52.0 38.4 
2 2013/10/22 417.0 96.3 192.8 95.7 127.0 155.7 80.0 
2 2013/10/23 373.3 91.6 141.3 93.9 88.4 116.3 83.7 
2 2013/10/24 328.0 132.4 207.3 90.8 127.4 97.5 61.3 
2 2013/10/25 276.0 114.6 185.0 94.6 214.5 168.2 84.9 
2 2013/10/26 165.0 89.3 114.0 91.5 124.8 106.4 81.2 
3 2013/10/2 183.5 64.7 92.3 76.1 84.6 73.8 130.9 
3 2013/10/3 158.0 74.1 104.9 119.3 84.6 78.8 146.7 
3 2013/10/4 225.5 53.0 73.2 64.8 64.1 65.8 106.4 
3 2013/10/5 260.1 82.4 52.6 47.0 60.0 83.3 167.1 
3 2013/10/6 138.0 47.7 47.5 ** 28.0 34.1 80.4 

** The number of effective hours are lower than 16. 
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results from Syuguang (Table 5) indicated the following: 
(1) The first three synoptic weather patterns exhibiting the 
highest daily PM10 concentrations were northeast monsoon 
and peripheral circulation of the typhoon, peripheral 
circulation of the typhoon, and high-pressure circulation 
mixing with a warm sector. The average wind speeds of the 
three weather patterns recorded at Lunbei were 3.7, 3.0, and 
1.9 m s–1, respectively. (2) The average wind speed and PM10 
levels of strong northeast monsoons, standard northeast 
monsoons, and weak northeast monsoons were compared. 
The strong northeast monsoon exhibited the highest average 
wind speed (4.0 m s–1) and the highest PM10 concentration. 
The six stations all exhibited these characteristics except for 
Lunbei. (3) Regarding the weather pattern of the northeast 
monsoon and peripheral circulation of the typhoon, 
Syuguang, Mailiau, Taishi, and Douliou Stations exhibited 
the highest average PM10 concentrations. (4) The top three 
synoptic weather patterns exhibiting the highest component 
scores of the first principal component were the northeast 
monsoon and peripheral circulation of the typhoon, high-
pressure circulation mixing with a warm sector, and high-
pressure recirculation. Whether high-pressure recirculation 
and wind speed severely influence fugitive river dust will 
be examined later. (5) For the synoptic weather pattern 
exhibiting the highest PM10 concentration, a strong northeast 
monsoon was determined to carry the highest PM10 
concentration at Mailiau, Pacific high pressure stretching 
westerly at Yisian, and high-pressure recirculation at Lunbei. 

In addition to considering synoptic weather patterns, a 
cross-analysis was conducted to carefully evaluate the 
correlation between the scores of the first principal 
component, weather patterns, and wind speeds at Lunbei 
(wind speed was divided into high and low wind speeds at 
3.5 m s–1) (Table 6). The findings were as follows: 
(1) High wind speed elevated the component score of the 
first principal component of weather patterns including the 
northeast monsoon and peripheral circulation of the 
typhoon, peripheral circulation of the typhoon, strong 
northeast monsoon, and the Pacific high pressure. That is, 
these four synoptic weather patterns increased the PM10 
concentration at each station under the condition of high 
wind speed. (2) Comparing a standard northeast monsoon 
with a weak northeast monsoon, the component score of 
the first principal component of high wind speed was not 
necessarily higher than that of low wind speed. (3) In the 
Zhuoshui River basin, river dust episodes were easily 
formed in the aforementioned four synoptic weather patterns 
at high wind speeds. Northeast monsoon and peripheral 
circulation of the typhoon as well as peripheral circulation 
of the typhoon were directly related to typhoons. Based on 
previous synoptic weather patternsin Table 6, the Pacific 
high pressure stretching westerly exhibited higher scores in 
the first principal component. This Pacific high pressure 
stretching westerly often occurred at 1 day before or after 
two weather patterns of northeast monsoon and peripheral 
circulation of the typhoon, and peripheral circulation of the 
typhoon. (4) A typhoon that affected Zhuoshui River areas 
was usually accompanied by rainfall, and the rainfall 
reduced the PM concentration.  
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Table 6. Average component scores of distinct synoptic weather patterns and wind speed categories. 

Synoptic Weather 
Wind speed 

Avg. PC1 scores Probability (%) 
< 3.5 m s–1 ≥ 3.5 m s–1 <3.5 m s–1 ≥ 3.5 m s–1

Frontal passage –0.55 –0.59 2.12 0.47 
Ahead of warm front 0.10 –0.25 4.24 1.10 
Strong northeast monsoon 0.02 0.15 4.79 8.48 
Standard northeast monsoon 0.05 –0.33 9.18 12.48 
Weak northeast monsoon 0.11 –0.33 11.85 2.75 
Off-shored high pressure I 0.10 –0.48 2.20 1.02 
Off-shored high pressure II 0.29 –0.44 1.02 0.16 
High pressure reflux 0.52 0.55 13.66 2.67 
Pacific High Pressure system stretching westerly 0.33 0.34 2.75 0.16 
Southwest flow –1.51 –1.99 0.16 0.08 
Coastal front 0.20 –0.86 0.86 0.24 
Pacific High Pressure system 0.17 1.28 1.81 0.24 
South flow –0.10 –0.14 3.69 0.94 
Northeast monsoon and peripheral circulation of the typhoon 0.00 1.95 0.39 0.55 
Peripheral circulation of the typhoon –0.34 0.38 0.86 0.39 
Northeast monsoon and South China rain area move eastward 0.52 –1.18 1.41 1.73 

 

Relevant studies on fugitive river dust pollution in 
Taiwan have begun by separating the seasons into wet and 
dry. However, the present study investigated monitoring 
data from the Zhuoshui River basin and found that typhoons 
in July, August, and September still caused local river dust 
episodes; for example, September 15, 28, and 29, 2012, 
and October 16–21, 2015. In addition to transboundary 
pollution (Oh et al., 2015; Lai et al., 2016) and dust storm 
episodes, two characteristics—typhoons that did not pass 
over the land in Taiwan and northeast monsoons during 
dry season—are also likely to cause river dust episodes in 
the Zhuoshui River basin. Based on the past experiences, 
fugitive river dust episodes easily occurred during dry 
season at Taiwan, and the construction period of performing 
yearly control measures to combat fugitive river dust was 
then set in September. However, analytical results of this 
study indicated the typhoon season (often occurring July–
September) (Fang et al., 2009; Cheng and You, 2010) 
could be another crucial factor to cause fugitive river dust 
pollution. Therefore, control method and construction period 
of mitigating fugitive river dust at Taiwan must take into 
account the typhoon season. 
 
CONCLUSION 
 

This study applied unrotated principal component analysis 
to screening fugitive river dust episodes and analyzed the 
PM10 concentrations, synoptic patterns, and meteorological 
parameters for Zhuoshui River. The first component, as 
confirmed by its component score, is an adequate indicator 
of air pollution episodes. The number of exceedances at a 
monitoring station with regard to the PM10 standard 
increased with the component score of the unrotated first 
principal component. Aside from PM10 episodes resulting 
from transboundary pollution and dust storms, the three 
dominant synoptic patterns that caused fugitive river dust 
episodes on Zhuoshui River were the peripheral circulation 

of a typhoon, the northeast monsoon and the peripheral 
circulation of a typhoon, and a strong northeast monsoon. 
This study identified two phenomena favorable to fugitive 
river dust pollution: firstly, a typhoon that did not pass 
over the land in Taiwan; and secondly, a strong northeast 
monsoon during the dry season. Since the typhoon season 
is highly conducive to fugitive river dust episodes in 
Taiwan, as demonstrated by the results of multivariate 
analysis, it must be taken into account when proposing and 
implementing control measures for this type of pollution. 
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