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ABSTRACT 
 

With the acceleration of urbanization in China, haze has become a growing threat to human health. However, 
comprehensive research on the diffusion and evolution of PM2.5 is still lacking. Therefore, this study proposed an 
improved Gaussian smoke plume model that considered the influence of multiple factors, such as rain wash, gravity 
sedimentation, and surface rebound, on PM2.5. Additionally, the evolution of PM2.5 was predicted by selecting 9 factors 
with a large influence. In the prediction, a support vector machine (SVM) and radial basis function kernel were adopted to 
construct classifiers and obtain the maximum distinction degree, respectively. Finally, the diffusion simulation and 
experimental evolution prediction were verified using data obtained from nine PM2.5 monitoring stations in Wuhan. The 
experimental results showed that the algorithm could obtain considerably accurate simulation results of the PM2.5 diffusion 
with low error for measured values. Therefore, this model may be useful in government plans for formulating strategies 
that control and reduce environmental pollution. 
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INTRODUCTION 

 
Industrialization in China has remained dynamically 

innovative over the past 30 years; however, as a consequence, 
China is now facing significant environmental problems 
(Bell et al., 2014). Common environmental problems include 
air pollution, water pollution, and soil pollution. Among 
them, air pollution, especially PM2.5 particles in the air, 
threatens human health directly (Chafe et al., 2015). PM2.5 
refers to fine particulate matter in air that are less than or 
equal to 2.5 µm in diameter. These particles can absorb 
bacteria, viruses, and harmful pollutants (Atkinson et al., 
2014). The concentration of PM2.5 is closely related to haze 
weather, which directly influences human health and causes 
various kinds of diseases, such as cardiovascular diseases 
(Kloog et al., 2015). Therefore, governance on haze weather 
and PM2.5 has become the focus of the government, 
environmental protection departments, and the general 
public (Kioumourtzoglou et al., 2016). 

Thus far, numerous scholars have studied the causes, 
related factors, and the harmful effects of PM2.5 to the 
environment and human health. Huang et al. (2017) studied 
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PM2.5 diffusion using NOAA, NAQFC, and other indexes; 
Kim et al. (2017) conducted long-term prediction of PM2.5 
index diffusion using the history prediction model; Hu et 
al. (2015) explored PM2.5 diffusion using U.S. MODIS data 
with a three-phase model; Gan (2012) completed diffusion 
prediction through a point source Gaussian smoke plume 
model for the first time. Gao et al. (2017) predicted winter 
PM2.5 concentration in the north of China, and also conducted 
diffusion research using the Gaussian plume model; Cao et 
al. (2016) conducted PM2.5 diffusion research using the 
multi-scale adaptive KLMS kernel function; Zhou et al. 
(2003) comprehensively analyzed the influencing factors 
of atmospheric pollution through weather forecasting and a 
statistical method, and identified the influencing factor 
associated with PM2.5; Di et al. (2016) conducted PM2.5 
diffusion research using the chemical transmission model, 
and predicted PM2.5 using linear regression; Zhang et al. 
(2013) predicted the evolution of PM2.5 through multiple 
linear regressions, and achieved good prediction. You et 
al. (2016) predicted the evolution of PM2.5 using the 
geometric weighting regression model; Zhan et al. (2017) 
completed PM2.5 evolution prediction of China’s fog areas 
using the airspace dominant machine learning method; 
Huang et al. (2014) achieved accurate prediction of PM2.5 
with non-point source Gaussian smoke plume model, 
considering the influence of various factors on PM2.5 to 
ensure more accurate prediction results. On this basis, Liu 
and Ding (2015) determined the influencing factors of 
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PM2.5, identified key factors with the largest impact on 
PM2.5 through a principal component analysis model, and 
established the theoretical basis for the evolution prediction 
of PM2.5. Li (2014) built the Gaussian plume model by 
considering factors such as wind speed, simulated the 
diffusion of PM2.5, and obtained ideal results. 

According to existing literature, the diffusion simulation 
and evolution prediction of PM2.5 still require further 
study. In this study, an improved Gaussian smoke plume 
model was built on the basis of the existing Gaussian 
smoke plume model. The new model took rain wash, gravity 
sedimentation, and surface rebound into full consideration. 
In the evolution prediction of PM2.5, the key influencing 
factors were extracted from the literature through principal 
component analysis. Then, they were transformed into 
feature vectors, and input into support vector machine (SVM) 
for training. Next, the trained SVM was used to complete 
the PM2.5 evolution prediction of the follow-up time. Finally, 
a corresponding simulation experiment was conducted using 
data provided by nine PM2.5 monitoring sites in Wuhan, and 
the improved algorithm proposed in the paper was verified. 
 
IMPROVED GAUSSIAN SMOKE PLUME 
MODEL 
 
Gaussian Smoke Plume Model 

The Gaussian smoke plume model is a pollutant 
diffusion model of PM2.5 in the atmosphere established on 
the assumption of normal distribution. Among numerous 
diffusion prediction models, Gaussian smoke plume models 
based on turbulence statistics can provide more accurate 
predictions for simulating actual conditions (Ristic et al., 
2015). Therefore, research on diffusion models of PM2.5 
generally adopt Gaussian smoke plume models. The 
distribution of the Gaussian function can help simulate all 
kinds of random processes. The current Gaussian smoke 
plume model includes a point diffusion model, closed 
diffusion model, and surface diffusion model, which are 
applied to the diffusion simulation of different pollutants. 
The point diffusion model is usually constructed in the 
diffusion modeling of PM2.5. 

Gaussian smoke plume models can simulate the 

concentration distribution of PM2.5, and areas of dangerously 
high concentrations, as well as indicate the concentration 
diffusion radius, and also reflect the concentration peak of 
a certain concentration diffusion point with changes in 
time. Fig. 1 shows the classic Gaussian point source smoke 
plume diffusion model. 

In the model, t = 0 signifies the origin coordinates of the 
PM2.5 point pollution sources; after t, the contamination 
concentration of the point (x, y, z) in 3D space is marked 
with C(x, y, z). According to the calculation equation of 
surface flux, the flux Q per unit area per unit time could be 
obtained: 
 
Q = –σgradC(x, y, z) (1) 

 
σ denotes diffusion coefficient; gradC(x, y, z) denotes 
pollution concentration gradient because the pollutants 
diffuse from high to low concentration areas. The 
transformation equation of pollutants could be obtained 
from turbulent diffusion and atmospheric molecular 
diffusion theory: 
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The X axis signifies the downwind diffusion direction 

axis of the pollution source; the Y axis is the horizontal 
direction axis; the Z axis is the vertical upward direction 
axis; and σx, σy, and σz are the diffusion coefficients of the 
respective corresponding directions, and the coefficients are 
closely related to the atmospheric stability and downwind 
distance.   signifies the dissolution degree. 

Eq. (2) is the parabolic partial differential equation in 
infinite space. The source function of coordinate origin 
was recorded as initial conditions: 
 
C(x, y, z, 0) = Qδ(x, y, z) (3) 
 
Q denotes the total amount of pollutants; δ(x, y, z) is the 
intensity function of the point source. From the limit of the 

 

 
Fig. 1. Classic Gaussian point source smoke plume diffusion model. 
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initial conditions and after the introduction of the Gaussian 
function, the Gaussian smoke plume diffusion model can 
be defined as follows: 
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 (4) 

 
H(m) signifies the effective emission height of PM2.5; k 
denotes the average wind speed. The model assumes that 
the wind speed is horizontal in the X-axis direction. 

Through the definition of Gaussian smoke plume model 
C(x, y, z, H(m)), the model could simulate the diffusion of 
PM2.5 concentration at various points through normal 
distribution in the three-dimensional space. In fact, because 
the model was based on turbulent statistics, the following 
assumptions were made during the process of modeling: 
(1) Pollutants presented Gaussian distribution in space; 
(2) The space wind speed was uniform, and the direction 

of wind did not change; 
(3) The distribution of pollutants was continuous in space; 
(4) The process of diffusion followed the law of conservation 

of energy, and the conversion rate was 100%. 
 

Gaussian Smoke Plume Model Modified with Multiple 
Factors 

In the actual prediction process of PM2.5, interference 
conditions (Hosseini et al., 2016), such as air humidity, 
gravity sedimentation, and earth surface reflection, exist. 
In order to solve the inaccurate diffusion prediction of 
traditional Gaussian smoke plume models under the actual 
conditions of several influencing factors, the modified 
models were established in view of the three largest 
influencing factors (air humidity, gravity sedimentation 
and earth surface reflection) such that the Gaussian smoke 
plume model satisfied the various constraints, and the 
accuracy of the predicted PM2.5 concentration in air could 
be increased. 
 
(1) Air humidity factor: 

When air humidity is high, during fog, rain, and snow 
events, some particles in the air are cleaned, and soluble 
gases will be incorporated into the water; when air humidity 
is higher, some PM2.5 particles will suffer erosion or 
sedimentation, leading to changes in the diffusion region 
(Elperina et al., 2016). It was assumed that the coefficient 
of PM2.5 was washed or subsided as φ. The relationship 
between the coefficient and moisture impact strength is as 
follows: 
 
φ = aIb (5) 
 
I signifies the strength of the effect of moisture; a and b are 
parameters, and their experience values were usually taken. 

Considering erosion or sedimentation, the source point 
strength was modified as follows: 

' ( ) exp( )
x

Q x
k


   (6) 

 
k denotes the average wind speed. The adjusted source 
point strength can be expressed as follows: 
 
QA(x) = Q(x) × Q'(x) (7) 
 
Q(x) signifies the original source point strength. 

According to the change of the source point, the 
Gaussian smoke plume model in Eq. (4) was modified and 
can be represented as follows: 
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 (8) 

 
When z = 0, the concentrations distribution of ground 

PM2.5 could be obtained: 
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When z = y = 0, the concentrations distribution of PM2.5 

at the ground axis direction could be obtained: 
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The Gaussian smoke plume model was modified by 

regarding the influence of erosion or sedimentation as a 
weight to make the model obtain accurate simulation 
results of PM2.5 diffusion in a high-humidity environment. 
 
(2) Gravity sedimentation factor 

In actual observation scenarios, PM2.5 particle diffusion 
is influenced by rain wash as well as sedimentation due to 
gravity (Ristic et al., 2015). For sedimentation caused by 
gravity, sedimentation velocity generally depends on the 
combined action of the particles’ own gravity and the 
acting force of air on particles. In the gravitational theory, 
it could be expressed as follows by the Stoke formula: 
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s
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  (11) 

 
ρ denotes the density of PM2.5 particles; g is acceleration 
due to gravity; D is the diameter of PM2.5 particles; µ is the 
air reacting force coefficient; Vs signifies the sedimentation 
velocity of particles under the action of gravity. 

Under the effect of downward speed produced by gravity 
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sedimentation, after time t, the descending distance of PM2.5 
particles on X axis is as follows: 
 

s
s

V x
V t


  (12) 

 
Within t time in the X-axis direction, the result of 

changes in height is H − (Vsx)/µ; according to the diffusion 
theory and momentum transfer theory, the amount of ground 
sedimentation produced by the height change is as follows: 
 
Wd = Vs × C(x, y, 0) (13) 
 

Under the action of ground sedimentation volume, the 
ground PM2.5 concentration distribution was correspondingly 
modified: 
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(3) Earth surface reflection factor: 

Earth surface reflection is another major factor influencing 
PM2.5 particles. When PM2.5 particles undergo washing or 
gravity sedimentation on a building surface or the ground, 
some PM2.5 particles are rebounded into the air; these 
particles could still cause secondary diffusion (Juodis et al., 
2016). The rebounded PM2.5 particles also require further 
weighting, and therefore, the original Gaussian smoke plume 
model was modified. It was assumed that the ground rebound 
coefficient in the rebound model was α; for a point P in 
space, pollutants can be considered as the sum of two parts; 
one part is PM2.5 concentrations produced by sedimentary 
volume, and the other part is PM2.5 concentrations produced 
by the ground reaction. The sum of the two parts is the 
PM2.5 particle concentrations at current point P: 
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In addition, the bounce produced by building surfaces 

need to be taken into account. Buildings generally produce 
tilting bounce. Assuming that the rebounded coefficient is 
β, the revised PM2.5 particle concentration at point in the 
space is as follows: 
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By combining with Eqs. (15) and (16), a condition of α 
= 0, β = 0 implies that ground/building surface pollutants 
were completely absorbed; in contrast, α = 1, β = 1 implies 
that the ground/building surface pollutants were completely 
rebounded. 

The modified Gaussian smoke plume model could 
successfully simulate the diffusion of PM2.5 considering air 
humidity, gravity sedimentation, and earth surface reflection 
in actual situations. In addition, the diffusion area in the 
three-dimensional space could be simulated through the 
model. Nevertheless, in addition to the model building of 
diffusion scope, the PM2.5 value at each sampling point of 
the diffusion also needed to be estimated, which is influenced 
by many factors.  

 
EVOLUTION AND PREDICTION OF PM2.5 
CONCENTRATION BASED ON SVM 

 
According to the correlation analysis of PM2.5, the 

concentration level was influenced by many factors, 
generally CO2, SO2, O3, H2O, temperature, and humidity. 
Thus, it was difficult to obtain good generalization through 
a mathematical model (Zhang et al., 2016). In the study, 
from the viewpoint of machine learning, nine important 
influencing factors of PM2.5 were considered as feature 
vectors; then, prediction and regression were performed 
with machine learning such that the PM2.5 concentration in 
the area would automatically evolve over time. Based on 
statistical rules, there was no obvious linear relationship 
between the air pollution factors and PM2.5, and various 
nonlinear relationships further complicated model depiction. 
On this basis, SVM was used for training the influencing 
factors. PM2.5 evolution was predicted using a data training 
model. The model could use the kernel method to describe 
all kinds of nonlinear relations, had good adaptability to 
different samples, and was suitable for solving various 
nonlinear problems. 

SVM is a type of machine learning classifier based on 
the statistical learning method (Hou et al., 2016). Mapping 
low dimensional input vectors to high dimensional feature 
space through nonlinear mapping allows the feature vector 
to always be split by the hyperplane in high dimensional 
space. For this purpose, the classification surface of the 
data requires optimization, namely, the maximum interval 
between the data on the classification surface. The optimal 
classification plane w × x + b = 0 was analyzed using SVM, 
where w denotes the weight, x denotes the support vector, 
and b is additive bias. Solving the optimal classification 
plane means solving the quadratic programming problem 
of w and b: 
 

2

,

1
min

2b
  (17) 

 
s.t.yi(ω·xi + b) ≥, i = 1, 2, …, n (18) 
 

By solving the optimization problem of quadratic 
programming, the optimization of weights w and b could 
be solved through the Lagrange multiplier method and 
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KKT conditions. Then, the optimal results of the sample 
classification could be obtained. 

In fact, almost all of the practical problems cannot meet 
the linear separable data set x, and linear inseparable data 
sets cannot be classified only through linear classification. 
On this basis, SVM combines slack variables and allows 
some samples to be wrongly classified. In this case, SVM can 
be used to solve the nonlinear separable data sets. In addition, 
as shown in Fig. 2, such data sets could not be solved 
through slack variables because classification according to 
the linear classification plane would lead to more incorrectly 
classified samples, resulting in poorer final classifier 
performance. Therefore, in SVM, the concept of kernel 
function was adopted, and the linear inseparable data sets 
were changed through the kernel function to the high 
dimensional space, through which mapped original data 
such that the linear classification plane can be effectively 
used for classification. 

The quadratic optimization problem of SVM could be 
converted as follows by changing the kernel function: 
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s.t.yi(ω·φ(xi) + b) ≥ 1 – ξi (20) 
 
ξi ≥ 0, i = 1, 2, 3, …, n (21) 
 
ξi denotes the slack factor, φx denotes the kernel function, 
and C is the penalty coefficient. Similarly, the optimal 
solution of quadratic programming could be obtained using 
the Lagrange multiplier method and KKT conditions, and 
then the nonlinear SVM classification plane could be 
expressed as follows: 
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K(xi, xj) denotes the kernel function. Based on the idea of 
kernel function, we could easily predict PM2.5 diffusion 
using SVM with multiple kernel functions. 

In general, multiple characteristics are required for the 
prediction and classification with SVM, and the prediction 

of PM2.5 evolution can be completed by building related 
characteristics of PM2.5. According to the related studies 
on the evolution process of PM2.5, influencing factors that 
have significant relationships with PM2.5 generally include 
this study, according to the literature, nine influencing 
factors air, temperature, humidity, pressure, and wind speed. 
In were selected for the prediction of PM2.5 (SO2, NO2, O3, 
PM10, CO, temperature, humidity, air pressure and wind 
speed) from many factors. We input the 9D features to the 
SVM in the form of vectors, and predicted the PM2.5 
evolution by building SVM training and prediction processes. 
For the kernel function, the suitable high-dimensional 
space RBF kernel function was selected: 
 

2
1

( ) sgn exp
n

i
i

i

x x
f x a b



        
  

   (23) 

 
In the process of prediction, the collected training set was 
assumed to be {xi, yi, i = 1, 2, 3, …, 9}, and nine samples 
were considered. In the training set, x denotes the feature 
vector composed of the nine influencing factors, and y 
signifies the specific PM2.5 concentration value obtained 
from every sample. They were regarded as the tag for 
regression prediction in actual use; regression could be 
completed through the input feature vector in the trained 
model. The training process of SVM was aimed at finding 
an optimal separating hyperplane wTx + b = 0, on which the 
9D feature vectors provided by x could be distinguished to 
the highest degree. In fact, when the data had low degree 
of differentiation, SVM provided the kernel function to 
solve the problem. The original feature could be converted 
to high dimensional space through different kernel functions. 
Under the conversion function, characteristics had stronger 
linear separability, and the generalization of different 
categories of data was increased. 

Because the 9 feature vectors extracted in the study were 
independently and identically distributed in space and 
time, and various variables almost had no relationship, 
they could be effectively distinguished through the radial 
basis function. Then, the prediction and regression of PM2.5 
could be completed through the SVM separating hyperplane. 
Thus, the SVM classification kernel function in the paper 
was selected as the radial basis function. 

 

 
Fig. 2. Changing nonlinear data set and higher dimensional linear separable data sets through the kernel function. 
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RESULTS AND DISCUSSION 
 
Experimental Scenario and Data 

PM2.5 data from Wuhan were taken as the analysis 
object. Wuhan, Hubei Province, is located in the middle 
and lower reaches of the Yangtze River at 30.5931°N, 
114.3054°E, and covers an area of 8000 km2, of which 
urban area accounts for around 800 km2 and forest cover 
accounts for more than 25%. Because its year-round climate 
is temperate continental climate and subtropical monsoon 
climate, it receives adequate annual rainfall, sufficient 
sunlight, and four distinct seasons. It is hot in summer and 
cold in winter and has high annual rainfall. There are nine 
PM2.5 monitoring sites in Wuhan, which publish real-time 
monitoring data every hour. The monitoring data include 
SO2, NO2 and O3, PM10, CO concentrations required for 
the SVM prediction in this study. Each index required by 
PM2.5 regression and prediction could be obtained by 
combining with the real-time monitoring indexes of 
temperature, humidity, air pressure, and wind speed. Fig. 3 
shows the distribution of PM2.5 monitoring stations in 
Wuhan. 

 
Experimental Process and Parameter Solving 

(1) Solving diffusion parameters of the improved 
Gaussian smoke plume model: When solving the parameters 
of the improved Gaussian plume model, atmospheric 
stability was first required. In general, atmospheric stability 
includes six levels, namely, extremely unstable, unstable, 

slightly unstable, moderately stable, stable, and highly 
stable. In the process of analysis and calculation of the 
experimental data, parameters were built in the highly stable 
atmospheric environment because Wuhan has moderate 
latitude and better atmospheric stability (Liu et al., 2015). 
In addition, it was assumed that the diffusion parameters 
on the direction of x and y were the same. Only the two 
parameters σy, σz along the direction of y and z were 
actually used. The diffusion coefficient was determined by 
the following equation: 
 
σy = γ1X

ε1, σz = γ2X
ε2 (24) 

 
γ, ε is the effect of wind speed on PM2.5 particle diffusion, 
and X is the observation data at the current time point.  

According to the data of the PM2.5 monitoring station in 
January and February 2015, the improved Gaussian smoke 
plume model was solved. When solving the Gaussian plume 
model, we needed to consider the proposed three major 
factors, namely, rain wash, gravity settling, and surface 
reflection. Rain wash is more complex than the other factors 
in the specific calculation process, so it was excluded in the 
experiment. Therefore, gravity settling was first considered 
in the experiment. According to Eqs. (11–13), the key 
parameter Wd in gravity settling factor was calculated. On 
this basis, considering the surface reflection factor, the key 
parameters α and β of the surface reflection factor were 
calculated according to Eq. (15). Finally, Qʹ and H(m) of 
the Gaussian model under ideal conditions were calculated

 

 
Fig. 3. Distribution of PM2.5 monitoring stations in the urban areas of Wuhan. 



ARTICLE IN PRESS 
 
 

He et al., Aerosol and Air Quality Research, x: 1–10, xxxx  7

according to Eqs. (1–4); according to the parameter values 
of the two key factors, the adjusted Qʹ value and H(m) 
were calculated through Eqs. (14) and (16). The parameter 
solving results are given in Table 1. Parameters γ1 and γ2 
were obtained through observation, and parameters ε1 and 
ε2 were obtained through calculation based on Eq. (24). 

(2) Solving PM2.5 source strength: The collected mass 
fraction was first converted to concentration because the 
actual diffusion prediction involved the prediction of PM2.5 
concentrations. The equation below gives the conversion 
process (Zhu et al., 2017): 
 

( ) ( )
+ P LO Hi LO

P LO
Hi LO

IAQI IAQI BP BP
C BP

IAQI IAQI

  



  (25) 

 
IAQIP signifies air quality partial of PM2.5; CP is the 

mass density of PM2.5; BPHi is the air quality subindex and 
the high value of nearby pollution concentration limit of 
the corresponding CP; BPLO denotes low value of nearby 
pollution concentration limit of the corresponding CP; 
IAQIHi signifies the air quality partial corresponding to 
BPHi; and IAQILO is the air quality partial corresponding to 
BPLO. After the abovementioned transformation, the 
recorded values of PM2.5 from the stations could be converted 
into the mass density. The location of the collection 
stations is shown in Fig. 3; formatting data are provided to 
simplify the calculation of CP, and CP was calculated using 
data from all the collection stations. Through the total mass 
concentrations of PM2.5 calculated using the abovementioned 
process, source intensity Q could be expressed with unit 
time per unit volume of mass concentration of PM2.5 (Ma 
et al., 2016). We assumed a C unit mass concentration 
within t time and V volume. Then, the source intensity Q 
could be solved with CP: 
 

PC
Q V

t
   (26) 

It was assumed that t = 1 h, V = 10 km3. 
(3) Calculation of the distance between collection 

stations: The distance between collection stations is closely 
related to the diffusion of PM2.5. According to the latitude 
and longitude relationship between each collection station, 
the shortest distance between each collection station could 
be calculated from the great-circle distance. Assuming that 
(φ1, λ1),(φ2, λ2) denotes the latitude and longitude of two 
collection stations, the great circle distance between two 
collection stations on the sphere could be built through the 
definition of the haversine function and cosine of two 
angles.  
 

2 2ˆ 2arcsin( sin ( / 2) cos cos sin ( / 2))s f        
 

 (27) 
 

After the above parameter solving, source transformation, 
and distance calculation, the diffusion results of PM2.5 
pollution in the 9 monitoring points could be computed. 
Table 2 shows the diffusion results and statistical value. 

As shown in Table 2, Yuehu, Huaqiao, Qingshan, Ziyang, 
and Donghu in heavy industry area of Wuhan had higher 
PM2.5 concentration, and more obvious diffusion of PM2.5. 
Moreover, Wujiashan, Jiangtan, as well as other scenic and 
living areas had lower concentrations of PM2.5, and smaller 
diffusion range, being consistent with the basic law of the 
environment. In addition, remote areas, such as Zhuankou, 
which has lower local population density and belonged to 
an agricultural area, had the lowest PM2.5 concentration 
without any diffusion of PM2.5. In short, the Gaussian smoke 
plume model established in the paper could effectively 
analyze different environmental conditions and different 
concentrations of PM2.5 and diffusion. The model built in 
this study considers gravity settling, building surface rebound, 
and the rain wash, so it could ensure true and reliable 
results corresponding to actual conditions, and adaptability 
to various cases. The statistical results of the nine monitoring 

 

Table 1. Results solving parameters of the improved Gaussian plume model. 

Index γ1 ε1 γ2 ε2 α β Q' Wd H(m) 
PM2.5 Value1 0.92 0.05 0.78 0.06 0.11 0.08 32.5 84.7 [0, 1 k] 
PM2.5 Value2 0.88 0.07 0.53 0.37 0.07 0.03 33.7 89.2 [1 k, 10 k] 
PM2.5 Value3 0.74 0.13 0.32 2.4 0.03 0.01 34.6 87.6 > 10 k 

 

Table 2. Diffusion results and statistical values of PM2.5 pollution at nine monitoring points. 

 Wujia 
Mountain 

Moon 
Lake 

Hua 
Qiao 

Hankou 
Marshland 

Gang 
Hua 

Li 
Yuan 

Zi 
Yang 

Dun 
Kou 

Gao 
Xin 

Wujia Mountain 0 10.12 8.11 6.03 7.12 4.58 7.12 8.43 11.9 
Moon Lake 9.42 0 4.33 5.51 6.01 3.12 5.87 6.41 5.18 
Hua Qiao 7.43 4.12 0 8.51 6.71 5.98 4.45 6.98 6.55 
Hankou Marshland 5.87 5.63 8.34 0 5.11 4.59 3.87 4.03 6.43 
Gang Hua 7.34 6.33 6.39 5.38 0 4.72 4.39 5.87 6.73 
Li Yuan 4.51 2.45 5.56 4.32 5.31 0 5.03 6.01 7.93 
Zi Yang 7.23 6.74 4.39 3.64 4.56 5.21 0 1.85 2.34 
Dun Kou 8.33 7.42 7.43 3.87 6.34 6.26 2.19 0 6.48 
Gao Xin 12.1 4.35 6.31 7.34 6.93 8.43 2.73 8.73 0 
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points in Wuhan show that there was a certain difference 
in the values of mutual testing areas. For example, the test 
value was 10.12 from Wujiashan to Yuehu, but it was 9.42 
from Yuehu to Wujiashan. In general, such small differences 
are caused by factors such as temperature, humidity and 
wind direction. These minor factors should be taken into 
consideration in the process of follow-up studies so as to 
increase the reliability of the results. 

(4) Predicting PM2.5 evolution with SVM: The indexes 
of SO2, NO2 and O3, PM10 and CO could be obtained from 
PM2.5 monitoring stations. By combining with the real-time 
parameters such as temperature, humidity, air pressure, 
and wind speed provided by the Wuhan Meteorological 
Agency, multidimensional characteristics could be generated 
with the nine real-time parameters. Then, through SVM 
training with a month as the unit, PM2.5 diffusion and 
evolution could be predicted for the follow-up months. 
Finally, the evolution prediction results using the SVM 
model were compared with the actual values. Fig. 3 shows 
the comparison of the prediction values and real values of 
concentration evolution for PM2.5 monitoring stations in 
Wuhan within eight follow-up months. In addition, a 
contrasting experiment was conducted under the same 
feature vectors using the linear regression model (Di et al., 
2016). Finally, the evolution prediction results through SVM 
model and the linear regression model were compared with 
real results. Fig. 4 shows the comparison of the evolution 
prediction results of the SVM model and the linear 
regression model with the real results. Furthermore, in the 
experiment, the concentration evolution of PM2.5 at the 
nine monitoring stations in Wuhan was predicted within 
the eight follow-up months. 

As the comparison results show, there were no significant 

differences between the predicted value and actual value of 
PM2.5 evolution from March to May, while there were more 
differences from June to October. The climate, temperature, 
rainfall, and humidity in Wuhan changed slightly from 
March to May and had little impact on PM2.5. With the 
change of temperature and humidity, coupled with the 
impact of monsoon winds, the hypothesis of the prediction 
research was nullified. Thus, the gap between evolution 
prediction value and the actual value gradually increased. 
As shown by the comparison of the evolution prediction 
results of the linear regression model and SVM model, the 
SVM model showed clearly higher precision than the 
linear regression model towards the last few months. With 
longer prediction time, the prediction model requires 
higherdimension features, which would result in poorer 
fitting of the machine learning model, and eventually 
decrease the prediction precision. However, in the SVM 
model, we adopted the RBF kernel, which could cope with 
higher dimension features and provided better characteristics 
and robustness of prediction. Nevertheless, because there 
were insufficient samples in SVM modeling, it was assumed 
that samples under various climates throughout the year 
could be obtained. Accordingly, the SVM modeling was 
performed with PM2.5 data for the whole year to obtain 
better results. The SVM model built in this study had certain 
generalizations and can better predict PM2.5 evolution. 
 
CONCLUSION 
 

With rapid industrialization, haze has become an 
increasingly serious threat in China. To effectively control 
haze, the PM2.5 concentration must first be decreased. A 
large number of studies have shown that the formation of 

 

 
Fig. 4. Comparison of the prediction values and real values of PM2.5 evolution in the monitoring stations in Wuhan within 
8 months. 
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PM2.5 is complicated and mutually influenced by several 
factors. In order to more effectively simulate and predict 
PM2.5 evolution, the Gaussian smoke plume model was 
rebuilt based on the practical situation and a consideration of 
multiple influential factors. Feature vectors were constructed 
by selecting the 9 factors with the largest influence on 
PM2.5, and an SVM model was established. The model 
achieved good diffusion simulation and good evolution 
prediction. However, because various factors influence 
PM2.5, the currently built Gaussian smoke plume model 
and the SVM model still cannot effectively and accurately 
simulate and predict PM2.5 values. Therefore, more factors 
should be considered in future work. In addition, the 
Gaussian smoke plume model and SVM model should be 
modified to ensure that the simulation and prediction of 
PM2.5 are closer to the actual measured values. 
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