Supplementary File ## Biosphere Atmosphere Exchange of CO₂, H₂O Vapour and Energy during Spring over a High Altitude Himalayan Forest at Eastern India Abhijit Chatterjee^{1,2,*}, Arindam Roy¹, Supriyo Chakraborty³, Anand K Karipot⁴, Chirantan Sarkar¹, Soumendra Singh⁵, Sanjay K Ghosh^{2,5}, Amitabha Mitra⁵, and Sibaji Raha^{1,2,5} ¹Environmental Sciences Section, Bose Institute, P1/12 CIT Scheme-VIIM, Kolkata-700054, India ²National Facility on Astroparticle Physics and Space Science, Bose Institute, Darjeeling-734101, India ³Center for Climate Change Research, Indian Institute of Tropical Meteorology, Dr Homi Bhabha Road, Pune-411008, India ⁴Deaprtment of Atmospheric and Space Science, Savitribai Phule Pune University, Pune-411007, India ⁵Center for Astroparticle Physics and Space Science, Bose Institute, Salt lake, Sector-V, Kolkata-700091, India Fig S1: Response of NEE to the total incoming solar radiation during spring Fig S2: NEE response to solar radiation during normal (without rain) cloudy days and after-rain-cloudy days