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ABSTRACT 
 

Exposure to ambient fine particulate matter (PM2.5) is identified as one of the leading risk factors for morbidity and 
mortality in India. Here we estimate ambient PM2.5 exposure and its 18-year (1998–2015) trend in 109 Indian cities 
using satellite data and further classify them into six vulnerable classes (from index 1 for low vulnerability to index 6 for 
extreme vulnerability). PM2.5 exposure has shown a rapid increase in Delhi and the cities in Uttar Pradesh, Bihar, 
Jharkhand, West Bengal, Punjab, Haryana, Rajasthan, Madhya Pradesh, Chhattisgarh and Odisha. Amongst the cities with 
a population of more than 0.5 million (as per the 2011 census), Thiruvananthapuram is the least vulnerable and Aligarh is 
the most vulnerable city based on 18-year statistics. Only 27 cities are identified as ‘low’ to ‘moderately’ vulnerable to 
ambient air pollution. The median incremental rate of the annual PM2.5 exposure has increased by 57.9% (from 0.9 to  
1.15 µg m–3 per year) with the night-light counts (a proxy for urbanization rate) increasing from < 20th percentile to 
> 80th percentile. 51 out of the 60 Indian cities chosen for the ‘smart city’ mission are highly vulnerable to PM2.5 
exposure (vulnerability index > 2) and thereby face challenges to achieve the core objective of the mission (i.e., a 
sustainable environment). Our results will facilitate prioritizing a  clean-air action plan for the cities based on their 
vulnerability rankings to achieve the maximum health benefit for the exposed population. 
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INTRODUCTION 
 

Chronic exposure to ambient fine particulate matter 
(PM2.5) leads to morbidity and mortality and reduces life 
expectancy (WHO, 2005). In the Global Burden of Disease 
(GBD) and several other studies (Anenberg et al., 2010; 
van Donkelaar et al., 2010; Brauer et al., 2012; Cohen et 
al., 2017), air pollution has already been identified as one 
of the leading risk factors for morbidity and mortality. 
Numerous studies (e.g., Pope et al., 2002; Lipsett et al., 
2011; Xing et al., 2016) around the world have documented 
the causal relation between various health endpoints 
(viz., respiratory, cardiovascular and pregnancy outcomes) 
and ambient PM2.5 exposure. 

In all the global studies, the Indian subcontinent has been 
identified as one of the major pollution hotspots. Aerosol 
optical depth shows large space-time variability in the 
Indian subcontinent (Dey and Di Girolamo, 2010) influenced 
by emission characteristics, meteorology and topography. 
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AOD has been found to increase in parts of the subcontinent 
mainly during the dry season in the last decade (Dey and Di 
Girolamo, 2011; Krishna Moorthy et al., 2013). Satellite-
retrieved AOD data are used to infer PM2.5 concentrations 
(Dey et al., 2012) to examine the ambient PM2.5 exposure in 
the entire country. It has been observed that 51% of the 
country’s population is exposed to the World Health 
Organization (WHO) interim target (IT) 1 of 35 µg m–3, 
while another 13% and 18% of the population are exposed to 
the ranges 25–35 µg m–3 and 15–25 µg m–3. Five hotspots 
have been identified where annual PM2.5 have increased 
over the last decade by > 10–15 µg m–3. In three of these 
five hotspots, the major sources are industrial, vehicular 
and household emissions, while household emission is the 
dominant source in the remaining two. The high-resolution 
ambient PM2.5 exposure data have been further utilized to 
estimate the premature mortality burden in India at the 
district level (equivalent to ‘county’ in the western world) 
(Chowdhury and Dey, 2016). Based on the exposure data, 
it has been estimated that 44,900 (5,900–173,300) premature 
deaths can be avoided annually by meeting the Indian 
annual PM2.5 standard (40 µg m–3). 

The population distribution in India is changing rapidly 
because of the migration from rural areas to cities to avail 
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oneself of better social and economic opportunities (Jaysawal 
and Saha, 2014). According to Census 2011, ~31% of India’s 
current population lives in urban areas and contributes 
63% to the gross domestic product (GDP) of India. By 2030, 
the urban areas in India are expected to house 40% of the 
country’s population and contribute 75% of India’s GDP. 
This would change population-weighted PM2.5 exposure, 
even if the PM2.5 concentration remains unchanged. 
Moreover, a higher population density in the cities demands 
specific exposure estimates for better policy. In India, 46 
cities (according to the 2011 census) have a population 
greater than 1 million, and 94 cities have a population greater 
than 0.5 million. PM2.5 measurement in India following 
international protocol in a systematic manner was started by 
the Central Pollution Control Board (CPCB) in 2008–2009, 
and as of today, 61 sites across 37 cities have continuous 
PM2.5 data freely accessible from the CPCB network 
(www.cpcb.gov.in/CAAQM/mapPage/frmindiamap.aspx). 
CPCB has been extending the network over the years and 
will continue to do so in future. The government of India 
has launched an air quality index (AQI) for the effective 
communication of the air quality status to the public using 
six broad categories (good, satisfactory, moderately polluted, 
poor, very poor and severe) and colors (green, light green, 
yellow, orange, red and dark red for the six classes from 
‘good’ to ‘severe,’ respectively). AQI is calculated based 
on data of eight pollutants: PM2.5 and PM10, CO, NO2, SO2, 
CO, O3, NH3 and Pb. AQI is calculated only if data are 
available for a minimum of three pollutants, one of which 
should be either PM10 or PM2.5. Every month, a bulletin is 
released by CPCB (accessible from their website 
[www.cpcb.nic.in]) on AQI of various Indian cities along 
with an advisory on possible health impacts. For example, 
‘good’ AQI is considered to have a minimal impact, and 
‘satisfactory’ AQI may cause breathing discomfort to 
sensitive people. People with lung and heart disease, 
children and older adults may face breathing problems if 
AQI degrades to ‘moderate’, while ‘poor’ AQI may cause 
breathing discomfort to any person with prolonged exposure. 
Prolonged exposure to ‘very poor’ AQI may cause respiratory 
illness, and ‘severe’ AQI may have respiratory effects even 
on healthy people. Periodic bulletins on AQI have 
sensitized the Indian population to air pollution. However, 
most of the calculations rely on PM10 rather than PM2.5 due 
to limited PM2.5 data across the country. Even in cities 
such as Delhi, where multiple PM2.5 monitoring sites are 
operational, PM2.5 data prior to 2011 are not available. 

In India, a few studies have analyzed limited in situ PM2.5 
data available from CPCB or other sources. For example, 
Sahu and Kota (2017) noticed that PM2.5 exceeded the 
national ambient air quality standard during 85% of the 
days in Delhi for the period 2011–2014. Matawle et al. 
(2015) characterized PM2.5 source profiles in Raipur. PM2.5 
distribution and composition were studied in Agra by Pipal 
et al. (2014) and Pachauri et al. (2013). Similarly, Pipalatkar 
et al. (2014) have studied PM2.5 source apportionment in 
Nagpur for the period Sep. 2009 till Feb. 2010. There are 
several other studies in the literature examining PM2.5 
distributions, sources and compositions across India. All of 

these studies are limited mostly to a season or, at best, to a 
few years. Moreover, so far, PM2.5 data exists only for a 
few cities. Therefore, the long-term temporal pattern of 
PM2.5 in the Indian cities cannot be examined due to such a 
short period. 

Here, we generate 18-year (1998–2015) PM2.5 statistics 
for 109 cities (Table 1) in India (94 of them have a population 
of > 0.5 million, and the other 15 are major cities in their 
respective states) to examine the changing pattern of the 
ambient PM2.5 exposure. The locations of these cities in 
India are shown in Supplementary Fig. 1. The cities are 
classified into 6 vulnerable classes based on the annual 
mean exposure, its trend over an 18-year period, exposed 
population and the baseline mortality of major diseases that 
can be attributed to chronic exposure to air pollution. The 
trends in annual PM2.5 exposure are interpreted in view of 
the urbanization rates in these cities using night-light data. 
 
METHODOLOGY 
 

In the present analysis, we consider 94 cities with a 
population exceeding 0.5 million, 8 other major cities with 
a population in the range 0.35–0.5 million and 7 capital 
cities with a population < 0.35 million: Gangtok, Itanagar, 
Panjim, Shillong, Shimla, Kohima and Aizawl. The state of 
Maharashtra has the highest number of cities (19) in our 
list (Table 1), followed by Uttar Pradesh (16), Tamil Nadu 
(9), Andhra Pradesh, Karnataka and Gujarat (6 each) and 
Madhya Pradesh, Rajasthan and West Bengal (5 each). 
Other states have 1–3 cities in this population range. The 
cities in India are classified administratively as ‘X’, ‘Y’ 
and ‘Z’ category as per the recommendations of the Sixth 
Central Pay Commission (www.ccis.nic.in) based on the 
living standards. Currently, Delhi, the greater Mumbai area, 
Hyderabad, Kolkata, Chennai and Bangalore are categorized 
as the highest class, ‘X’, followed by 68 cities in the ‘Y’ 
category and the remainder in the ‘Z’ category (see Table 1). 
The Ministry of Urban Development, Government of India, 
chooses 60 of these 109 cities for the ‘smart city’ mission. 
The core objective of this national mission is to promote 
cities that provide its citizen with a high quality of life and 
a clean and sustainable environment by employing 
adequate infrastructure and smart solutions. The goal of the 
vulnerability analysis here is to provide the status of the air 
quality in these cities, as air quality is an integral part of a 
sustainable environment. 
 
Generation of City-level Ambient PM2.5 Statistics 

Due to the lack of presence of adequate in situ PM2.5 data 
in India, we utilize satellite aerosol products. Over the last 
two decades, passive sensors have been routinely retrieving 
columnar AOD globally from sun-synchronous orbits. 
AOD data are matched to in situ PM2.5 using the GEOS-
Chem model using geographically weighted regression that 
represents aerosol columnar optical properties and vertical 
distribution (van Donkelaar et al., 2006). PM2.5 estimated 
from three different passive sensors are combined to 
generate a consistent global PM2.5 database at a 0.01° × 
0.01° resolution. The methodology of development of the 
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Table 1. Statistics of annual PM2.5 exposure level, trend, exposed population, number of monitoring sites in the Indian 
cities and the state they belong to. The vulnerability class of these cities are ranked as ‘low’ (1), ‘moderate’ (2), ‘high’ (3), 
‘very high’ (4), ‘severe’ (5) and ‘extreme’ (6). The cities falling in ‘X’ category are marked by **, those in ‘Y’ category 
by * and the remaining are classified in ‘Z’ category. The cities in ‘bold’ font are chosen for the ‘smart city’ mission of the 
Ministry of Urban Development, Government of India. Number of existing continuous PM2.5 monitoring sites with open 
access data from CPCB website (http://www.cpcb.gov.in/CAAQM/mapPage/frmindiamap.aspx) is mentioned. Note that 
PM2.5 measurement using traditional filter-based technique, individual efforts and through other state and central agency 
(e.g., SAFAR) are also ongoing, but those data are not accessible freely. 

 
State City 

Annual PM2.5

exposure 
(in µg m–3) 

Total change 
(in µg m–3) 

Population 
(2011) 

Monitoring 
sites 

Vulnerability

1 Jammu and Kashmir Srinagar* 32.3 13.9 1192792 0 4 
Jammu* 37.5 19.4 503690 0 4 

2 Himachal Pradesh Shimla 32.2 6.5 169578 0 1 
3 Punjab Amritsar* 53.4 25.0 1132761 1 4 

Jalandhar* 54.1 22.9 862196 0 3 
Ludhiana* 57.7 22.9 1613878 1 4 

4 Chandigarh Chandigarh* 58.1 19.5 960787 0 3 
5 Uttarakhand Dehradun* 46.9 15.5 578420 0 3 
6 Haryana Faridabad* 97.3 19.4 1404653 1 4 

Gurgaon* 85.8 21.0 876824 1 4 
7 Delhi New Delhi** 97.4 32.6 11034555 20 5 
8 Rajasthan Jaipur* 52.4 24.3 3046163 1 5 

Ajmer 42.6 23.7 542580 1 4 
Bikaner* 39.8 19.6 647804 0 4 
Jodhpur* 41.0 21.3 1033918 1 4 
Kota* 44.9 22.2 1001694 1 4 

9 Uttar Pradesh Agra* 91.6 29.6 1585704 1 6 
Aligarh* 103.8 31.9 872575 0 6 
Allahabad* 59.3 31.5 1117094 0 5 
Bareilly* 87.1 24.0 898167 0 5 
Firozabad 95.1 28.4 603797 0 5 
Ghaziabad* 101.0 24.5 1636068 1 6 
Loni 101.2 30.8 512296 0 6 
Meerut* 98.0 30.4 1309023 0 6 
Moradabad* 86.1 24.8 889810 1 5 
Varanasi* 60.8 33.3 1201815 1 5 
Gorakhpur* 70.0 35.9 671048 0 5 
Jhansi 53.7 23.2 507293 0 5 
Kanpur* 77.4 31.3 2765348 1 6 
Lucknow* 77.0 32.4 2817105 1 6 
Noida* 103.4 32.4 642381 1 6 
Saharanpur 71.3 26.1 703345 0 5 

10 Bihar Gaya 55.9 21.7 463454 1 6 
Muzaffarpur 69.5 32.0 351838 1 6 
Patna* 65.9 31.9 1683200 1 6 

11 Sikkim Gangtok 23.1 34.9 98658 0 3 
12 Arunachal Pradesh Itanagar 20.8 11.6 59490 0 2 
13 Nagaland Kohima 16.5 10.1 267988 0 2 
14 Mizoram Aizawl 21.8 17.6 293416 0 3 
15 Tripura Agartala 49.2 25.4 400004 0 4 
16 Meghalaya Shillong 24.3 13.3 143229 0 3 
17 Assam Guwahati* 32.9 25.4 963429 0 5 
18 West Bengal Asansol* 44.4 28.9 564491 0 4 

Durgapur 41.6 27.9 566937 1 4 
Howrah 36.8 32.1 1072161 1 4 
Kolkata** 34.8 26.5 4496694 2 4 
Siliguri 46.0 28.8 509709 0 4 
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Table 1. (continued). 

 
State City 

Annual PM2.5

exposure 
(in µg m–3) 

Total change 
(in µg m–3) 

Population 
(2011) 

Monitoring 
sites 

Vulnerability

19 Jharkhand Dhanbad* 45.1 27.5 1161561 0 5 
Jamshedpur* 43.3 23.2 631364 0 4 
Ranchi* 40.0 19.3 1073440 0 4 

20 Odisha Bhubaneswar* 29.7 24.0 837737 0 4 
Cuttack* 30.6 23.4 606007 0 4 
Rourkela 35.4 21.5 552970 0 4 

21 Chhattisgarh  Bhilai* 52.9 26.0 625697 0 4 
Raipur* 49.1 27.3 1010087 0 5 

22 Madhya Pradesh Bhopal* 37.2 23.0 1798218 0 5 
Ujjain 37.3 20.9 515215 0 4 
Gwalior* 65.4 24.9 1053505 0 5 
Jabalpur* 38.7 17.9 1054336 0 4 
Indore* 34.6 18.8 1960631 0 5 

23 Gujarat Ahmedabad* 37.0 20.9 5557940 1 4 
Bhavnagar* 32.7 20.7 593768 0 3 
Jamnagar* 30.2 26.2 529308 0 3 
Rajkot* 32.0 23.8 1286995 0 3 
Surat* 31.3 19.4 4467797 0 3 
Vadodara* 34.7 20.7 1666703 0 3 

24 Maharashtra Amravati* 34.9 22.7 646801 0 2 
Aurangabad* 34.4 20.2 1171330 1 3 
Bhiwandi* 35.9 20.0 711329 0 2 
Kalyan- Dombivali** 34.5 21.7 1246381 0 3 
Kolhapur* 28.5 18.8 549283 0 2 
Malegaon 31.3 17.6 471006 0 2 
Mira Bhayandar 37.3 19.4 814655 0 2 
Mumbai** 37.6 19.0 12442373 1 4 
Nanded 32.1 22.9 550564 0 3 
Nashik* 31.8 18.7 1486973 1 2 
Navi Mumbai** 39.6 19.8 1119477 1 3 
Pimpri-Chinchwad 39.4 20.4 1729359 0 3 
Pune* 38.5 19.7 3124458 1 3 
Sangli-Miraj Kupwad 26.4 17.4 502697 0 2 
Solapur* 28.8 19.7 951118 1 2 
Ulhasnagar 32.5 18.9 506937 0 2 
Vasai-virar** 36.7 20.0 1221233 0 3 
Thane 37.6 19.8 1818872 1 3 
Nagpur* 38.3 22.2 2405665 1 3 

25 Andhra Pradesh Vijayawada* 28.7 17.8 1034358 2 3 
Vishakhapatnam* 27.8 17.1 2035922 2 3 
Guntur* 28.2 19.1 743354 0 3 
Nellore 22.1 12.1 600869 0 2 
Hyderabad** 25.7 18.0 6731790 7 4 
Warangal* 25.6 20.7 811844 0 3 

26 Karnataka Belgaum* 23.1 13.5 488292 0 2 
Bengaluru** 22.5 9.1 8443675 5 4 
Gulbarga 30.2 27.6 532031 0 3 
Hubli-Dharwad* 22.2 16.7 943857 0 3 
Mangalore* 17.2 10.7 499486 0 2 
Mysore* 19.4 7.4 887446 0 1 

27 Goa Panjim 23.7 15.2 40017 0 1 
28 Kerala Kochi* 16.1 11.0 601574 0 1 

Thiruvananthapuram* 15.0 9.4 957730 1 1 
29 Tamil Nadu Ambattur 24.2 12.6 478134 0 1 
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Table 1. (continued). 

 
State City 

Annual PM2.5

exposure 
(in µg m–3) 

Total change 
(in µg m–3) 

Population 
(2011) 

Monitoring 
sites 

Vulnerability

  Chennai** 24.5 12.8 4646732 3 3 
  Coimbatore* 20.1 12.5 1601438 0 1 
  Erode 21.9 19.8 498129 0 2 
  Madurai* 20.3 12.6 1561129 0 1 
  Salem* 22.2 14.9 831038 0 2 
  Tiruchirappalli* 23.8 14.2 916674 0 2 
  Tiruppur* 19.8 13.3 877778 0 1 
  Tirunelveli 17.9 8.9 473637 0 1 

 

 
Fig. 1. 18-year mean annual PM2.5 exposure (in µg m–3) for the period 1998–2015 in the 109 Indian cities shown by the 
size of the circles, while the colors indicate the annual rate of change of PM2.5 exposure (in µg m–3 per year). 

 

PM2.5 product is described in detail in a different study 
(van Donkelaar et al., 2016). In brief, information from 
chemical transport model simulations, ground-based 
monitors and satellite (MODIS, MISR and SeaWiFS)-
retrieved AOD satellite-derived PM2.5 data are integrated 
using a geographically weighted regression technique. The 
resultant PM2.5 product is highly consistent (R2 = 0.81) 

with direct in situ measurements. Over India, the satellite-
derived PM2.5 data shows a bias of ±10 µg m–3 on an 
annual scale. 

PM2.5 data is converted from ASCII files to raster using 
the GIS Software (ArcGIS 10.1). The shape files are 
created for each of the 109 cities. The gridded satellite-
derived PM2.5 data are merged with the shape files, and 
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PM2.5 concentrations in all 0.01° × 0.01° grids within the 
city boundary are extracted and averaged to estimate the 
PM2.5 concentration representative of that particular city. 
Similarly, mean annual PM2.5 statistics for all 109 cities are 
extracted. The temporal trends of annual PM2.5 are derived 
using linear regression. 
 
Vulnerability Analysis 

The premature mortality and morbidity burden from 
chronic and acute ambient PM2.5 exposure is directly 
proportional to the exposed population, PM2.5 concentration 
and baseline mortality. Also, in cities where PM2.5 
concentration has been increasing over time, it poses a 
threat of higher exposure, as the population is bound to 
increase in the coming years. Epidemiological studies have 
shown a strong causal connection between ambient PM2.5 
exposure, and chronic obstructive pulmonary disease (COPD) 
and cardiovascular (stroke and ischemic heart disease, IHD) 
diseases (Pope et al., 2002, Pope et al., 2011). Therefore, 
we consider four parameters—the annual mean PM2.5, 
temporal trend, exposed population and baseline mortality 
of COPD, stroke and IHD—for the vulnerability assessment. 
The population data is taken from Census of India 2011, 
conducted by the Office of the Registrar General and 
Census Commissioner under the Ministry of Home Affairs, 
Government of India. Baseline mortality data for the cities 
are estimated using the nonlinear baseline mortality-GDP 
functions discussed in our earlier work (Chowdhury and 
Dey, 2016). In the absence of GDP data for the cities, we 
consider the GDP data of the states to which these cities 
belong. 

We develop a multi-parametric vulnerability ranking 
based on the four key parameters (viz., annual exposure, 
trend in exposure, exposed population and baseline mortality 
of COPD, IHD and stroke) that govern the premature 
mortality burden from chronic ambient PM2.5 exposure. For 
each city, a score in the range from 0 (no risk) to 1 (highest 
risk) is assigned to each of these parameters depending on 
the range of values across all the cities. We consider the 
counterfactual concentration to be 2.4 µg m–3, following a 
GBD 2015 study (Cohen et al., 2017), below which no risk 
exists due to chronic exposure and hence results in a score of 
0. A score of 1 is assigned to Aligarh for the largest mean 
(over the 18-year) annual PM2.5 concentration (101.4 µg m–3) 
from the counterfactual value. All the cities are assigned a 
score proportionately within the range 2.4–101.4 µg m–3 
based on the 18-year mean annual PM2.5 concentration 
(summarized in Table 1). Similarly, for the trend in PM2.5 
exposure, a score is given to each city in proportion to the 
observed trend relative to the entire range (i.e., from 
maximum to minimum). For example, Gorakhpur is given a 
score of 1 for the largest trend in annual PM2.5 (1.99 µg m–3 
per year), and Shimla is given a score of 0 for the smallest 
trend (0.36 µg m–3 per year). The remaining cities are 
scored in between. Any population, however small it is, is 
vulnerable to chronic exposure to ambient PM2.5 above the 
counterfactual concentration. Hence, no city gets a score of 
0 for the parameter ‘exposed population’. Mumbai is 
ranked 1 for the highest exposed population (12.4 million). 

The scores of the other cities are adjusted relative to the 
minimum and maximum value. Panjim, capital of Goa, scores 
the lowest (0.003) for the lowest exposed population (40,017). 
Using the same method, cities are given individual scores 
separately for baseline mortality (relative to the zero baseline 
mortality value) values for COPD, stroke and IHD. 
 

Night-light Data 
We use night light data measured by the Defense 

Meteorological Satellite Program-Operational Line Scanner 
(DMSP-OLS) to infer the urbanization rates in these cities 
during this period. Anthropogenic activities in a city expand 
due to an increase in human settlement, which is associated 
with artificial lighting during nighttime due to infrastructural 
development. DMSP-OLS has been monitoring night light 
since the early 1970s, but the more recent digital data are 
analyzed to produce a consistent and stable cloud-free 
nightlight database (Elvidge et al., 2001). The DMSP-OLS 
visible band was originally designed to detect moonlit 
clouds, but the photomultiplier tube intensifies the signal 
by a million-fold, allowing detection of lights present during 
nighttime at the earth’s surface. The night-light data are 
available at 30 arc seconds (~1 km at equator) in units of 6-
bit digital numbers ranging from 0 to 63. The bright pixels 
represent fully developed urban areas with outdoor 
illumination, while less brightly lit pixels represent less 
dense built-up areas (Small and Elvidge, 2013; Zhou et al., 
2015). 

The night light data for the period 1998–2015 is analyzed. 
To ensure anthropogenic activities at full scale, we estimate 
the frequency of the brightest pixels within each city’s limits 
for each year and generate temporal data of the night-light 
for 109 Indian cities. In all the cities, night light frequency 
is found to increase at varying rates. The rate of change in 
population weighted ambient PM2.5 exposure is analyzed in 
view of the rate of change in night light (a proxy of the 
urbanization rate) to examine the relation between them. 
 
RESULTS 

 
The annual mean PM2.5 concentration and its rate of 

change per year in the 109 Indian cities are shown in Fig. 1. 
The size of the circles represents the 18-year annual mean 
exposure, and the color represents the rate of change in mean 
PM2.5 per year. Across the cities, the annual mean PM2.5 
shows a wide range of variation with the lowest (15.0 µg m–3) 
exposure in Thiruvananthapuram (the capital of southern 
state Kerala) and the highest (103.8 µg m–3) exposure in 
Aligarh. In addition to the cities in the Delhi National 
Capital Region (NCR)—New Delhi, Noida, Ghaziabad, 
Meerut, Faridabad and Gurgaon—the 18-year annual mean 
PM2.5 exposure exceeds twice the Indian standard in Aligarh, 
Firozabad, Agra, Bareilly and Moradabad. Concentrations 
in the range 60–80 µg m–3 are observed in Kanpur, Lucknow, 
Saharanpur, Gorakhpur, Muzaffarpur, Patna, Gwalior, 
Varanasi and Allahabad. All these cities are situated in the 
Indo-Gangetic Plain (IGP). The annual exposure exceeds 
the Indian standard (40 µg m–3) in 20 more Indian cities, 
also spread throughout IGP. Outside IGP, an annual PM2.5 
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exposure close to the Indian standard (in the range 30–
40 µg m–3) is observed in the Mumbai industrial corridor 
(Mumbai, Navi Mumbai, Thane, Vasai-Virar), Pimpri-
Chinchwad and Pune, Nagpur, Jabalpur, Bikaner, Bhopal, 
Ujjain and industrial towns (Howrah, Rourkela and 
Ahmedabad). The exposure is relatively lower in cities in 
southern India, northeastern India and the hilly regions in 
northern India. The annual PM2.5 exposure has changed at 
a rate varying in the range from < 0.6 to 1.6 µg m–3 per 
year. In 29 cities, the annual PM2.5 exposure has increased 
by more than WHO IT-2 in the last 18 years, and it has 
increased by more than WHO IT-3 in another 60 cities. 
The lowest increase (by 6.5 µg m–3) is observed in Shimla. 
Similar to the annual PM2.5 exposure pattern, the rates of 
increase in PM2.5 exposure in the southern Indian cities are 
lower compared to the rates in the northern and eastern 
Indian cities. It is noteworthy that the PM2.5 exposure has 
been increasing at a rapid rate in relatively smaller (‘Y’ 
and ‘Z’ category) cities in the states of Uttar Pradesh, 
Bihar, West Bengal, Punjab, Madhya Pradesh, Chhattisgarh 
and Gujarat. Amongst the ‘X’ category cities, a large 
increase in the annual PM2.5 exposure is observed in Delhi, 
Mumbai, Kolkata and Hyderabad. Bangalore and Chennai 
have maintained relatively better air quality (PM2.5 has 
increased only by 6.5 and 12.8 µg m–3, respectively) despite 
their remarkable growth over the years.  

Fig. 2 depicts the time series of the annual PM2.5 
exposure averaged over the ‘X’, ‘Y’ and ‘Z’ category 
cities. The top and bottom ends of each box represent the 
75th and 25th percentiles, and the top and bottom ends of 
the solid lines in each box represent the 95th and 5th 
percentiles. It is to be noted that the ‘Y’ category cities 
have a higher annual PM2.5 exposure compared to the other 
two categories of cities in India. The annual PM2.5 exposure 
statistics in ‘X’ category cities (which are megacities) is 
weighed down (relative to the ‘Y’ category cities) by low 
annual exposure in the southern Indian cities (Hyderabad, 

Bangalore and Chennai). It is evident that the annual PM2.5 
exposure has been increasing steadily over all the cities in 
the last 18 years. In the ‘X’ category cities, the annual mean 
(± 1 σ) PM2.5 exposure rises from 25.1 ± 8.2 µg m–3 in 1998 
to 43.1 ± 11.7 µg m–3 in 2015, implying a 71.4% increase. 
The corresponding changes in ‘Y’ and ‘Z’ category cities are 
from 37.7 ± 22.3 µg m–3 to 54.4 ± 24.2 µg m–3 (a 54.2% 
increase) and from 30.5 ± 19.4 µg m–3 to 49.8 ± 23.8 µg m–3 
(a 63.4% increase), respectively. To summarize, the annual 
PM2.5 exposure has increased by 1.6 ± 0.08-fold in the last 
two decades in the Indian cities.  

Are the observed rates of changes in the annual PM2.5 
exposure related to the rise in emission due to urbanization 
in these cities? To answer this question, we analyze the 
trends in night-light data. Rapid urbanization would definitely 
have increased the emission from various anthropogenic 
activities. The trends in PM2.5 exposure and night-light 
counts should have been perfectly correlated without any 
transport of pollution to or from the city. However, variability 
in PM2.5 concentration is also influenced by meteorology. 
Therefore, we extract statistics of trends in the annual PM2.5 
exposure and the sum of night-light digital counts within 
each city’s limits for the 3 categories of cities (Fig. 3). It can 
be seen that for ‘X’ category cities, the trend of the total 
night-light intensity count is exponentially related to 
increase in the trend of annual PM2.5 exposure. This clearly 
shows the influence of rapid urbanization in these megacities 
on the increasing pollution. The ‘Y’ category cities throw a 
surprise by showing a bell-shaped curve. This implies that 
the annual PM2.5 exposure increases in some cities with an 
increase in the night-light count, while the exposure has 
increased in other cities without much change in the night 
light count. Night-light intensity would increase over time 
in a city where infrastructure development took place. If 
the night-light does not increase to a great extent over time, 
one plausible explanation of the increasing pollution level 
is the rise in emission from sources (such as the transport

 

 
Fig. 2. Box plots of annual PM2.5 exposure for ‘X’, ‘Y’ and ‘Z’ categories of cities in India. 
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Fig. 3. Relation between night light digital count trend (used as a proxy for urbanization rate) and the trend in annual PM2.5 
exposure for 109 Indian cities divided into 3 categories - ‘X’, ‘Y’ and ‘Z’. Each star represents a city. 

 

sector, trash burning and unorganized industries) that are 
not directly related to lighting at night. This contrasting 
pattern may also be attributable to the changing role of 
meteorology, which influences the transport of pollutants 
from outside the city. In the ‘Z’ category of cities, PM2.5 
exposure has increased without much change in the night 
light. City-specific emission inventories need to be developed 
and their trends analyzed to ascertain the exact cause for the 
contrasting behavior in PM2.5 exposure trends in these cities. 
Overall analysis reveals that the incremental median rate of 
annual PM2.5 exposure increases from 0.9 to 1.15 µg m–3 
per year with the night-light count increasing from the 
< 20th percentile to the > 80th percentile. 

Next, we assess the vulnerability of these cities due to 
the changing pattern of air pollution, and epidemiological 
and demographic transitions in the period 1998–2015 (see 
Table 1 for the statistics of each city). The cities are grouped 
into six vulnerable classes based on the final score as 
discussed earlier (Fig. 4). Vulnerability to air pollution is 
‘low’ (index 1) in 10 cities, of which only one (Shimla) is 
located in the hilly terrain in northern India and the rest of 
which are in southern India. 17 cities are classified as 
‘moderately’ vulnerable (index 2). These cities are distributed 
in peninsular India—high altitude cities in northern and 
northeastern India and in the coastal regions. 27 cities 
identified as ‘highly’ vulnerable (index 3) are located in 
the states of Gujarat, Maharashtra, Karnataka, Andhra 
Pradesh, Uttarakhand, Punjab and northeastern India. The 
cities in the greater Mumbai metropolitan area also fall in 
this category. The highest number (28) of cities have a 
vulnerability index of 4 and include four ‘X’ category cities: 
Mumbai, Bangalore, Hyderabad and Kolkata. 16 and 11 
cities have a vulnerability index of 5 (‘severely’ vulnerable) 
and 6 (‘extremely’ vulnerable) respectively. We note that 
Delhi, although touted as one of the most polluted cities in 
the world, does not belong to the highest vulnerability class 

(index 6) because of a much lower baseline for mortality 
(perhaps due to better healthcare access). Instead, cities in 
the states of Uttar Pradesh and Bihar with annual PM2.5 
exposures lower than that of megacity Delhi are categorized 
as extremely vulnerable (index 6) due to a combination of 
factors, such as wide PM2.5 exposure, a high increasing 
trend in annual PM2.5 exposure, high population density and 
most important, high baseline mortality for all diseases. 

90 cities were chosen by the Ministry of Urban 
Development, Govt. of India, for the ‘smart city’ mission, 
with a focus on sustainable and inclusive development in 
these cities. In our study, we extracted statistics for 60 of 
the 90 cities (the remaining cities have a population smaller 
than our threshold and hence are not considered in this 
analysis) and found that the vulnerability index for air 
pollution exposure and trend is 3 and above (‘high’, ‘severe’ 
and ‘extreme’) in 51 of them. Only 9 cities (Shimla in 
Himachal Pradesh, Nashik in Maharashtra, Kohima in 
Nagaland, Panjim in Goa, Kochi and Thiruvananthapuram 
in Kerala, and Coimbatore, Madurai, Tirunelveli and 
Salem in Tamil Nadu) have ambient air somewhat suitable 
for a sustainable environment. It must be noted that the 
annual mean exposure in these cities is still higher than the 
WHO guideline. In the remaining 51 cities, it would be a 
challenge to achieve a sustainable environment since the 
PM2.5 exposure has been increasing over the years, a trend 
that is expected to continue with further development 
under the ‘smart city’ mission. 

 
DISCUSSION AND CONCLUSIONS 
 

The goal of this work is to generate PM2.5 statistics for 
the Indian cities and understand their vulnerability to 
ambient PM2.5 exposure. The impact of chronic exposure to 
PM2.5 on human health depends not only on the PM2.5 
concentration but also on the population distribution and
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Fig. 4. Vulnerability index for the 109 Indian cities due to ambient PM2.5 exposure. Index ‘1’ indicates the least vulnerable 
cities while index ‘6’ indicates the most vulnerable cities. The statistics are given in Table 1. 

 

baseline mortality rates. Moreover, if the PM2.5 concentration 
has been increasing over the years, the burden is expected 
to continue rising with the predicted increase in population, 
making the cities more vulnerable. Therefore, our 
vulnerability index for the Indian cities accounts for the 
population-weighted annual PM2.5 exposure and its trend 
over almost two decades, the population distribution and 
the baseline mortality of COPD, IHD and stroke. Exposure 
data at a very high resolution (0.01° × 0.01°) has helped in 
generating improved exposure statistics, as the population 
distributions within the cities are highly variable. 

In India, the focus of air pollution discussions often 
remains limited within Delhi NCR. So far, mitigation attempts 
have only been made in the national capital, Delhi, to stall 
the rising level of air pollution. First, the operation of the 
mass transit system was switched from diesel and petrol to 
CNG in the period 2001–2002. The annual PM2.5 exposure 
dropped by 16.3%, but eventually it started rising again 
rapidly. In 2016, vehicle rationing was introduced for a 
short period of time (15 days) as an emergency measure to 
reduce the pollution. Though the attempt was commendable, 

it failed to mitigate pollution on a larger scale due to the 
meteorological impact and various other factors (Chowdhury 
et al., 2017). After the great smog episode from late 
October till early November in 2016, during which PM2.5 
concentration shot beyond 600 µg m–3 (10 times the Indian 
daily standard and 24 times the WHO daily standard) in the 
national capital territory of Delhi, the honorable Supreme 
Court of India formed a graded action plan for air pollution 
mitigation. Several measures, such as stopping garbage 
burning, mechanizing the sweeping of roads, discouraging 
the public from using private vehicles by increasing parking 
fees, intensifying public transport, stopping the usage of 
diesel generators, minimizing biomass burning and 
restricting the use of old diesel vehicles, were initiated. 

Our results show that the vulnerability due to ambient 
PM2.5 exposure is ‘very high’, ‘severe’, or ‘extreme’ in 
many cities that are smaller than Delhi and other ‘X’ 
category cities in India. In these cities, the rate of pollution 
increase is much higher than in Delhi. Therefore, the current 
inaction will potentially create Delhi like situations in these 
cities in the near future. In many of these cities, not a 
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single in situ PM2.5-monitoring site (Table 1 displays the 
existing monitoring network) is in operation. In cities that 
possess a single monitoring site, the method of deployment 
is still critical, as the exposure varies drastically within a 
city. The analysis of night-light trends reveals an 
interesting fact about the changing behaviors of emission 
patterns in these cities. Rather than assigning an absolute 
rank, we group the cities into six vulnerable classes to 
allow policymakers to prioritize cities that need city-
specific clean air action plans. Unless the cities achieve 
clean air, the true essence of the ‘smart city’ mission will 
remain unfulfilled. 

The major conclusions of this work are as follows: 
1. Contrary to the perception that the air pollution problem 

is limited to the Delhi National Capital Region, our 
analysis shows that vulnerability due to ambient-PM2.5 
exposure is equally high or even higher in cities 
located in the states of Uttar Pradesh, Bihar, Jharkhand, 
West Bengal, Punjab, Haryana, Rajasthan, Madhya 
Pradesh, Chhattisgarh and Odisha. 

2. Amongst the 60 cities selected for the Indian 
government’s ‘smart city mission’, only 9 cities (Shimla, 
Nashik, Kohima, Panjim, Kochi, Thiruvananthapuram, 
Coimbatore, Madurai, Tirunelveli and Salem) are 
identified as possessing ‘low’ to ‘moderate’ vulnerability 
to ambient air pollution. Therefore, achieving a 
sustainable environment, thus fulfilling one of the core 
objectives of the national mission, poses a big challenge 
to the remaining 51 cities. 

3. Rapid urbanization in Indian cities in the last two 
decades has definitely increased the level of air 
pollution. 
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