Chia-Wei C

Study of Flow Patterns in Two-Stage Mode of Moving Granular Bed Filter

Chia-Wei Chang¹, Shu-San Hsiau^{1, 2*}, Yi-Shun Chen¹, Yan-Pin Chyou³, Jiri Smid³

¹ Department of Mechanical Engineering, National Central University, Jhongli City, Taoyuan County, Taiwan 32001, R.O.C.

² Graduate Institute of Energy Engineering, National Central University, Jhongli City, Taoyuan County, Taiwan 32001, R.O.C.

³ Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Council, Longtan Township, Taoyuan County, Taiwan 32001, R.O.C.

14 Abstract

15

1

2 3

4

5 6

7

8

9

10

11 12

13

The use of moving granular bed filters (MGBFs) had being growing, and they held an 16 important role in the gasification or combustion of coal or biomass. Furthermore, they had great 17 potential to be developed for the high-temperature gas cleanup of advanced power generation 18 systems. However, the existence of a stagnant zone with defective designs in MGBFs could cause 19 serious damages such as plugging. Therefore, in order to minimize these flow problems, 20 flow-corrective inserts for filter vessels had been researched. Most previous theses used 21 mono-sized filter granules as filter media in a filter vessel. Meanwhile, this study proposed a new 22 23 method that introduced two filter granule sizes in one filter vessel, called the two-stage filtration mode. Nevertheless, the design theory of a mass flow vessel by Johanson could not be satisfied 24 by using two sizes of filter granules to diminish stagnant zone. The six test conditions of 25 configuration to accomplish the objective were explored in this study. The results included the 26 27 flow patterns in a two-dimensional and cross-flow moving granular bed with the different geometry designs in a filter vessel. The two kinds of filter granules consisted of coarse and fine 28 29 silica sands. The findings revealed that the flow pattern profiles of filter granules were influenced by the vessel geometry. The optimal design for two-stage filter granules in a filter vessel was 30 created to diminish the stagnant zone in 165 minutes. 31

³³ *Keywords:* Gas cleanup; Flow-corrective-insert; Stagnant zone; Silica sands.

^{*} Corresponding author. Tel: 886-3-426-7341; Fax: 886-3-425-4501

E-mail address: sshsiau@cc.ncu.edu.tw

INTRODUCTION

36	In 2013, the International Agency for Research on Cancer (IARC) of World Health
37	Organization (WHO) concluded that outdoor air pollution and one of its components,
38	particulate matter (PM), could cause lung diseases (Sax et al., 2013). The PM in air pollution,
39	water resources, soil, and plant contamination, could cause environmental impact and human
40	well-being (Chen et al., 2009; Al-Naiema et al., 2015). In order to decrease the level of PM
41	released to environment, the few filtration methods and specific techniques (Artun et al., 2017)
42	were adopted. Coal-fired power plants (CFPPs) which burned fossil fuel such as coal to
43	produce electricity discharged PM as well. While, It was forecasted that oil, as a source for
44	heat and electricity, would decline in the next century, but coal would still be used in CFPPs
45	for over a hundred years. Pressurized fluidized bed combustion (PFBC) and the integrated
46	gasification combined cycle (IGCC) were notable techniques in the application of CFPPs
47	since the 1970s which were a great source of PM (Li et al., 2016) such as SO_X and NO_X
48	(Baba et al., 2010) at high-temperature gas stream (> 450 °C). Furthermore, PM (e.g. fly ash)
49	would also cause a damage to the blades of a gas turbine. Therefore, to extend the blade-life
50	and reduce contamination of the air, it was necessary to filter fly ash out before they enter the
51	gas turbine. Ceramic barrier filters were one of the possible solutions for particulate removal
52	in high-temperature conditions. However, implementing Ceramic barrier filters had

53	encountered with some typical problems including: discontinuous operation, expensive
54	consumables (rigs), frangible ceramic surfaces, need for back-pulsing, creeping and bending
55	(Saxena <i>et al.</i> , 1985; Zevenhoven and Kilpinen, 2001). Therefore, the alternative technology
56	of moving granular bed filters (MGBFs) had been studied and developed (Mizukami et al.,
57	1987; Jung and Tien, 1991; Jung and Tien, 1992; Brown et al., 2003; Stanghelle et al., 2007).
58	From these references, the collection particulates of MGBFs were effective and reliable in hot
59	gas cleanup environments.
60	Granular bed filters have been used in the following modes of operation: fixed bed,
61	intermittent, continuous moving bed, and fluidized bed. They have the advantages of low-cost
62	filtration media, high temperature stability, continuous processing (besides fixed bed), and
63	circulation of filter granules (Kuo et al., 1998). The principle of filtering in a MGBF system
64	used bulk solids such as silica sands or limestone to retain particulates as they flow downward
65	from the top of the filter bed. When particulates from the gas flow penetrated the deep-packed
66	granular bed they were retained in the bed and do not plug its surface (Ives, 1975). This
67	principle could also be applied to the filtration of liquids. During the process, plugging
68	problems frequently occurred in moving granular beds (Ives, 1975). Therefore, it was
69	necessary to develop new geometry design in filter systems which were suitable for mass
70	flow rate that kept the filter granules flowing downward in the vessel. Thus, the plugging

71 problems or stagnant zone would be avoided.

72	Jenike (1964), Amold et al. (1980), and Robert (1995) identified that corresponding flow
73	patterns were considered as mass-flow. The mass-flow pattern could be created by smooth,
74	steep bins. Inside these bins, dead region or stagnant zone could be avoided by an obstacle or
75	a flow-corrective insert. Kuo et al. (1998) and Hsiau et al. (1999, 2000, 2001) found that the
76	flow patterns and velocity profiles of granular flow were influenced by the louvered
77	configuration in the Dorfan Impingo filter system and in different louvered designs of the
78	symmetrical louver-walled moving-bed system. These flow behaviors and velocity profiles
79	were found not only during experimental tests but had also been simulated by Chou et al.
80	(2000). In further research, Hsiau et al. (2008) and Smid et al. (2009) successfully developed
81	and optimized a moving granular bed with a louver-sublouver system to diminish most
82	stagnant zones. However, only mono-sized coarse sands were focused as the filter granules in
83	studies mentioned above.
84	Some scholar proposed a two-stage filtration mode (Chyou et al., 2011). A multi-stage
85	filtration process could provide about 90% to dust capacity with 20% acceptable increasing
86	pressure drop (Yang and Zhou, 2007). It used two kinds of silica sands (fine and coarse) as
87	filter granules with the new configuration of a moving granular bed. This filtration mode
88	called the "two-stage filtration" due to its two granule sizes, which were placed in two

89	different vertical layers. As shown in Fig. 1, the coarse sands were placed in the first stage of
90	filter granular bed, and the fine sands were placed downstream of the coarse sands as the
91	second stage. Thus, the larger particulates in the syngas flowing through the first layer of
92	coarse sands were caught. Then the remaining smaller particulates were captured in the
93	second layer by the fine sands. Therefore, most of the particulates would be retained in the
94	two-stage bed and that the total filtration efficiency would be enhanced corresponding to the
95	decrease in fly ash. This two-stage filtration mode would be applied in the basic setup of
96	two-dimensional thin slice panel system with flow-corrective insert design by Smid et al.
97	(2012). Moreover, this design equipped with flow corrective elements could solve the
98	plugging problems caused by the stagnant zones of filter granules. The test of this newly
99	designed apparatus was first reported in this study. Besides, our study essentially helped the
100	development of a moving granular bed filter that could be applied to the removal of dust
101	particulates in IGCC and PFBC systems.
102	
103	EXPERIMENTAL METHODOLOGY

105 Apparatus and materials

106 The MGBFs were a kind of cross-flow filter systems. The filter granules moved 107 downward and were exited from the bottom of the vessel. The syngas passed horizontally

108	through the granular layer forming a cross-flow section as shown in Fig. 2. In present study, a
109	two-dimensional model of the experimental moving bed was shown schematically in Fig. 3
110	(Smid <i>et al.</i> (2012)). Its dimensions were 1160 mm height, 380 mm width, and 50 mm depth.
111	A flow-corrective insert with symmetrical/asymmetrical galvanized plates was placed in the
112	middle position of the moving bed. The parameters of the flow-corrective insert were
113	designed using Johanson's theory (Johanson, 1966; Johanson and Kleysteuber, 1966;
114	Johanson, 1967/1968), as shown in Fig. 4. The flow-corrective insert was characterized by
115	angle $\theta_{1C} = \theta_{1F} = 20^\circ$, $\theta_{2C} = \theta_{1F} = 20^\circ$ for Test 1 to 5, and $\theta_{1C} = \theta_{2C} = 20^\circ$, $\theta_{1F} = \theta_{2F} = 15^\circ$ for
116	Test 6. The insert in a critical placement could diminish the stagnant zone. Following
117	Johanson's theory, $\alpha_{c.r.}$ could be obtained equal to 45°. The vertex of the flow-corrective insert
118	was determined by a line having an angle of $\pi/2-\alpha_{c.r.}-\theta_{2C}=25^{\circ}$ as it crossed the center line,
119	where the slope of the angle was measured from the horizontal under Test 1 to Test 5. For Test
120	6, the vertex of flow-corrective insert was changed due to an angle of $\theta_{1F} = 15^{\circ}$ and the angle
121	of $\pi/2-\alpha_{c.r.}-\theta_{2F} = 30^{\circ}$. The length of the flow-corrective insert L was calculated from
122	Johanson's equation, with the help of the angle α_C and angle α_F . In order to investigate the
123	flow patterns of the two sands, which could be affected by the flow-corrective insert, six
124	experiments were designed.

For Test 1 to Test 3, the same symmetry system was used as shown schematically in Fig.

126	5(a). Test 1 to Test 3 had the same angles, θ_{1C} , $\theta_{2C} = 20^{\circ}$ and θ_{1F} , $\theta_{2F} = 20^{\circ}$ and the same
127	length of the flow-corrective insert $L = 142$ mm. For further observation of the diminishing
128	stagnant zone, Test 1 and Test 2 were filled with fine sands, coarse sands, respectively. And
129	Test 3 was filled both coarse and fine sands in a vessel as a two-stage filter.
130	Hsiau et al. (2008) and Smid et al. (2009)'s researches pointed out that the geometry of
131	flow-corrective insert could influence the various stagnant zones. Furthermore, there was
132	stagnant zone found in Test 3 as a two-stage filter. In order to diminish the stagnant zone, the
133	asymmetrical systems of Test 4 to Test 6 were developed as shown in Fig. 5(b) to Fig. 5(d).
134	Both of Test 4 and Test 5 had the same angles θ_{1C} , θ_{2C} , θ_{1F} , and θ_{2F} of 20°. And for the
135	purpose of diminishing stagnant zone, the length of flow-corrective insert was extended to
136	147 mm and 192 mm in Test 4 and Test 5, respectively.
137	Considering that the physical properties of two kinds of sands were different, the
138	configuration of Test 6 was changed. As shown in Fig. 5(d), the vertex of the flow-corrective
139	insert was determined by angle of $\pi/2 - \alpha_{c.r.} - \theta_{2F} = 30^\circ$. And the angle of θ_{1C} , $\theta_{2C} = 20^\circ$, θ_{1F} , θ_{2F}
140	= 15° was used. Due to the vertex of the flow-corrective insert shifted, the length L was
141	modified to 169 mm and 173 mm by the angle of α_C and α_F too.
142	The granular particles were placed between the front and rear glass of the filter vessel
143	and were introduced into the filter vessel from an upper hopper with a rectangular discharging

144	slot. In order to reduce the wall friction effect of flowing granular particles, the front and rear
145	glass were cleaned carefully before each experiment. Near the bottom of the filter vessel, a
146	moving conveyer belt was controlled by a variable-frequency-drive motor at a flow rate of
147	$330 \pm 3\%$ g/min. This flow rate was measured by the average weight value of per minute of
148	discharged filter granules using an electronic balance (Precisa 30000D), which had a
149	resolution of 0.1 g. The particles of coarse sands ranged from 2 to 4 mm, whereas the fine
150	sands were around 0.2 mm. The sands consisted of 95% silicon dioxide and 5% other
151	chemical compositions as the flowing granular solids in this experiment. The friction between
152	the sands and wall were measured using a shear tester (Jenike, model FT-5STEH). The
153	friction angles of the coarse and fine sands with the wall were 15.78° and 20.9°, respectively.
154	
155	Experimental procedure
156	The experimental tests consisted of two parts as shown in Fig. 6. In the first part, the
157	tests were started to fill the coarse and fine colored sands (the originals were a light brown
158	color) into filter vessel. In this two-stage case, it was difficult to approach clear patterns while
159	filling two kinds of filter granules at the same time. At the beginning, the bin was filled with
160	colored coarse sands as shown in Fig. 6(a) and 6(b). After the first part, the tests started to run
161	circulation and to introduce colored fine sands downstream of the colored coarse sands as the
	encontration and to introduce colored line surfus downstream of the colored course surfus as the

163	The second part was the circulation of the filter vessel to reach the steady-state flow
164	conditions (in Fig. 6(d)). After three hours, the bulk density of moving sands was the
165	steady-state condition, because the weights of sands from vessel outlet were more
166	homogeneous. To record and to observe the colored stagnant zone of whole granular bed as a
167	second part of experimental test, a digital video camera (Sony, DCR-TRV 900) was used. The
168	camera was mounted on the cradle head of an aluminum tripod to get clear video quality and
169	was activated before the filter granules flowed in the filter vessel. The captured videos were
170	stored on a personal computer and further processed as the flow patterns shown in the results.
171	
172	RESULTS AND DISCUSSION
173	
174	Flow patterns
175	In this study, there was no gas flow passing through filter vessel. Generally, in a moving
176	bed design, the horizontal gas flow did not have a significant effect on the gravity flow of
177	filter granules because of its low velocity. For an IGCC system, the gas flow rate had to be
178	limited in a filtration mechanism with a low pressure drop. This was different from a fluidized
179	bed, where the gas flow had to overcome the minimum velocity of fluidization. Therefore, a
180	moving bed filter could be controlled in a low pressure drop condition.
101	Fig 7 showed the flow patterns of the colored filter granules for 300 minutes in 15

182	frames under Test 1 (Fig. 5(a)) conditions. The beginning stage of the experiment was
183	illustrated in Frame 1. The number shown below each frame corresponds to the time in
184	minutes. The time interval between each frame was 10 min over a period of 0 to 60 min.
185	From 60 to 300 min, the time interval between frames increased to 30 minutes to investigate
186	the changes. Three regions in these flow patterns were identified as follows: (1) stagnant zone,
187	which was the residual area of coarse and fine filter granules left in the original filter vessel,
188	near the flow-corrective insert and convergent part of the vessel. As shown in Fig. 7, a short
189	while after the experiment had begun, the patterns of the stagnant zone were quite clear in the
190	period between 30 and 60 min. The development of this zone diminished progressively after
191	the experiment had operated for 300 minutes, as shown in Fig. 7. (2) Left and right free
192	surface regions. These free surfaces were characterized by a minimum angle of repose and a
193	maximum angle of free surface stability. Hsiau et al. (2000) indicated that the angle of free
194	surfaces of granules normally oscillated between a minimum angle and a maximum angle
195	above. During the flow downward to the filter bottom, the granules avalanched frequently
196	over the free surfaces. When the angle of the free surface was smaller than the minimum
197	angle of repose, the new granules would roll down over the free surface until the maximum
198	angle of free surface stability was renovated.

In Test 1 to Test 5, flow-corrective inserts were designed to situate at the same horizontal

200	level. However, Test 6 was optimized, which shifted the flow-corrective inserts upward for
201	proper flow ability according to the theoretical angle $(\pi/2-\alpha_{c.r.}-\theta_{2F})$ for fine sands (Hsiau <i>et</i>
202	al., 1999). The test conditions for Test 1 to Test 3 were different: fine sands were used in Test
203	1, coarse sands were used in Test 2, and both fine and coarse sands were used in Test 3. The
204	filter setups for Test 1 to Test 3 used the same geometry design which was calculated from
205	Johanson's theory according to the conditions of coarse sands. As shown in Fig. 8, the flow
206	histories of the colored sands under Test 2 condition were recorded. In Test 2, the two
207	above-mentioned flow regions were found. The similar flow patterns and the stagnant zone
208	were found not only in Test 1 but were also observed in Test 2. For example, the diminishing
209	of the stagnant zone above the flow-corrective insert (the 40-min frames in both Test 1 and
210	Test 2) and the residual colored filter granules of stagnant zone (see 90 min in both Test 1 and
211	2) on the convergent part of the filter vessel were all very similar to those patterns in both test
212	conditions. Even if the flow patterns of Test 1 were similar to those of Test 2, there were some
213	differences within the results of the two tests. Thus, the diminishing time of stagnant zone
214	along in Test 1 was smaller than that in Test 2. The results showed that this angle of the
215	flow-corrective insert configuration was a better situation for the fine sands of Test 1 than for
216	the coarse sands of Test 2. By comparing the diminishing time (240 min in Test 1 vs. 210 min
217	in Test2) of the stagnant zone around the convergent part of the filter vessel wall, the time in

Test 2 was shorter than in Test 1.

219	For the purpose of controlling the particle size and concentration at which flue gas
220	flowed through the filter, both coarse and fine sands were placed in the same filter to achieve
221	two-stage filtration in Test 3 to Test 6. Fig. 9 showed the flow history of the colored sands
222	under Test 3 conditions. Similar flow regions were observed as in Test 1 and Test 2.
223	According to the results in the Test 3 conditions, the flow patterns showed significant change
224	from 40 min to the end of the experiment. First, it should be noted that the plug flow in
225	central area downward to the outlet of filter flowed even faster in 50 min than in Test 1 and
226	Test 2. Moreover, the fine sands behind the right side of the filter vessel wall formed a larger
227	stagnant zone than Test 1 in the 90-min frame with the same sands. This phenomenon
228	indicated that the setup of Fig. 5(a) was no longer suitable when two kinds of filter granules
229	were flowing in this configuration. The results also revealed that coarse and fine sands did
230	affect the each other's flow pattern. Generally, the bulk density of coarse sands were different
231	from that of fine sands making the inner pressure distribution of coarse and fine sands in the
232	filter vessel was also different. In this case, the existing stagnant zone on the right side wall
233	might be caused by internal friction of the coarse sands. The stagnant zone of sands behind
234	the right side of filter wall was diminished in the end.
235	Johanson (1966; 1967/1968) and Johanson and Kleysteuber (1966) indicated that the

236	configuration and placement of the insert was sensitive to the flow pattern behavior.
237	Meanwhile, a stagnant zone was developed when the wall and insert in the filter vessel were
238	not smooth or steep enough for it to diminish. The research of Hsiau et al. (2001) with
239	velocity filed analyses also pointed out that the angle of insert should be small to develop
240	mass flow. In order to decrease the stagnant zone in Test 3, the length of the right plate of the
241	flow-corrective insert was extended by 5 and 50 mm in Test 4 and Test 5, respectively. Fig. 10
242	and Fig. 11 showed the flow history of colored filter granules with an asymmetrical
243	configuration setup. However, the resulting flow patterns in Test 4 were very similar to those
244	in Test 3. The diminishing time from 90 to 240 min in the two tests showed no significant
245	change with the flow patterns. Compared with Test 3 and Test 5, there were some obvious
246	changes that should be noted. First, the flow area above the insert on the fine sands side
247	moved slower than in any of the previous experiments. This area between the right plate of
248	the insert and right wall of the filter vessel became a narrow flow region because of the
249	192-mm long plate. This was because the filter granules flow with more difficulty thought the
250	narrow region. Thus, the filter granules moved more slowly in the beginning. Then, in Test 5,
251	after 40 min, a plug flow occurred in the convergence area between the right plate of the
252	insert and the filter wall. This was a result of the fast movement of filter granules in the
253	vertical direction, and low horizontal dispersion. In addition, the plug flow in this area might

254	also have been caused by the extended plate. Next, a stagnant zone occurred above the right
255	plate of the flow-corrective insert. Comparing the stagnant zone in Test 5 to that of Test 3 and
256	Test 4 (90 min in Test 5 vs. 60 min in Test 3 and Test 4), the stagnant zone in Test 5 was more
257	difficult to diminish. For the optimal design of a filter vessel, a long-lasting stagnant zone
258	around the insert should be avoided if gas flew through this zone. Such a zone might cause
259	plugging problems above the insert region; thus, the filtration efficiency would decrease when
260	dusted flue gas flowed through it. This also meant that an existing stagnant zone would
261	increase the refreshing rate of filter granules. Despite the foregoing problem of an existing
262	stagnant zone, the stagnant zone of colored filter granules displayed a better diminishing time
263	
205	in the end.
264	Considering the experimental results from Test 1 to Test 5, the geometry of the filter
263 264 265	In the end. Considering the experimental results from Test 1 to Test 5, the geometry of the filter vessel or the configuration of the flow-corrective insert could not achieve the goal of mass
263 264 265 266	In the end. Considering the experimental results from Test 1 to Test 5, the geometry of the filter vessel or the configuration of the flow-corrective insert could not achieve the goal of mass flow conditions. Thus, the filter vessel and insert were redesigned according to Johanson's
263 264 265 266 267	In the end. Considering the experimental results from Test 1 to Test 5, the geometry of the filter vessel or the configuration of the flow-corrective insert could not achieve the goal of mass flow conditions. Thus, the filter vessel and insert were redesigned according to Johanson's theory, as shown in Fig. 5(d). Fig. 12 showed the flow history of colored filter granules in an
263 264 265 266 267 268	In the end. Considering the experimental results from Test 1 to Test 5, the geometry of the filter vessel or the configuration of the flow-corrective insert could not achieve the goal of mass flow conditions. Thus, the filter vessel and insert were redesigned according to Johanson's theory, as shown in Fig. 5(d). Fig. 12 showed the flow history of colored filter granules in an asymmetrical configuration set up with different angles of θ_1 and θ_2 in Test 6 conditions. The
263 264 265 266 267 268 269	In the end. Considering the experimental results from Test 1 to Test 5, the geometry of the filter vessel or the configuration of the flow-corrective insert could not achieve the goal of mass flow conditions. Thus, the filter vessel and insert were redesigned according to Johanson's theory, as shown in Fig. 5(d). Fig. 12 showed the flow history of colored filter granules in an asymmetrical configuration set up with different angles of θ_1 and θ_2 in Test 6 conditions. The flow behavior of coarse sands was not much different in comparison with Test 3 to Test 5.
 263 264 265 266 267 268 269 270 	In the end. Considering the experimental results from Test 1 to Test 5, the geometry of the filter vessel or the configuration of the flow-corrective insert could not achieve the goal of mass flow conditions. Thus, the filter vessel and insert were redesigned according to Johanson's theory, as shown in Fig. 5(d). Fig. 12 showed the flow history of colored filter granules in an asymmetrical configuration set up with different angles of θ_1 and θ_2 in Test 6 conditions. The flow behavior of coarse sands was not much different in comparison with Test 3 to Test 5. Nevertheless, the flow behavior of fine sands showed a distinct change with a trending

272	also removed quite quickly by virtue of the theoretical angle for fine sands. The steeper right
273	plate of the insert and wall of filter vessel also helped to meet the mass flow condition. In the
274	asymmetrical configuration design of Test 6, the result showed a faster refreshing rate of filter
275	granules removing in 165 min. Furthermore, the refreshing rate could be determined by the
276	time needed to replace the whole filter vessel completely with a new batch of purified filter
277	granules. The high granules refreshing rate might keep the pressure drop remain at a relatively
278	lower level across the filter vessel (Kuo et al., 1998).
279	
280	
281	Stagnant zone time
282	Fig. 13 showed the operation of experiments for Test 1 to Test 6 with stagnant zone
283	reduction during outflow. The equation for the stagnant zone percentage was described as
284	
285	Stagnant zone percentage (%) = A_R/A_A (1)
286	
287	Where A_R was the stagnant zone of colored filter granules, and A_A was the total area of
288	filter granules in the filter vessel. A comparison of the experimental results of flow patterns
289	from Test 1 to Test 6, including both coarse and fine sands, with the stagnant zone
290	percentages was shown in Fig. 13. Under Test 6 conditions one recycle exchange of all filter

291	granules was achieved in 165 minutes, and good results were accomplished. At the same time
292	as the filter granules in Test 6 outflowed, the stagnant zone percentage (colored filter granules)
293	under the other test conditions remained around 10%. This indicated that the refreshing rate in
294	the Test 6 condition had performed efficiently. The stagnant zone percentages under the
295	two-stage filter granules state were shown as Fig. 14 to Fig. 17 for the Test 3 to Test 6
296	conditions. From the results, the diminishing time in cases with a stagnant zone of coarse
297	sand was lower than in cases with fine sand. Therefore, the refreshing rate was inefficient due
298	to the stagnant zone of fine sands.
299	The fine sands outflowed successfully under Test 6 conditions; therefore, the stagnant
300	zone percentages of fine sands accomplished 0% even earlier than the coarse sands. Fig. 17
301	also revealed that the right side of Test 1 and the left side of Test 2 in comparison with Test 6.
302	The results showed the larger stagnant zone of fine sands than coarse sands before 90 min,
303	and the larger stagnant zone of coarse sands than fine sands after 90 min. Compare to Test 1,
304	Test 2, and Test 6, the geometry design and the parameters of Test 6 obtained a better flow
305	behavior remaining. Fig. 18 showed that the ratio of stagnant zone percentage of coarse and
306	fine sands in the Test 6 condition. The equation of the ratio was given as
307	
308	A_{RC}/A_{RF} = stagnant zone of coarse colored filter granules / stagnant zone of fine colored

311	Where A_{RC} was the stagnant zone of coarse colored filter granules, and A_{RF} was the
312	stagnant zone of fine colored filter granules. The subscript R stands for residual stagnant zone,
313	and the subscripts C and F stands for coarse and fine sands, respectively. The ratio of the Test
314	3 to Test 5 conditions showed that their tendencies were similar, decreasing over time. This
315	explains how the diminishing rate of coarse sands was faster than that of the fine sands and
316	furthermore that the smaller stagnant zone of coarse sands compared with that of the fine
317	sands. In the Test 5 condition, the above-mentioned tendency dropped sharply because of the
318	inefficiency of extending the 192 mm plate length of the insert setup. This was because the
319	excessively long plate obstructed the fluency of flow of the fine sands. After around 60 min of
320	experimental time in Test 3 to Test 5, the tendencies dropped more slowly until the tests
321	finished. This indicated that most of the residual coarse sands had been cleared from the filter
322	vessel, especially in the area along the left side of the insert plate. In the Test 6 condition, as
323	shown in Fig. 18, the tendency dropped at the start of 50 min. However, it started to rise
324	rapidly during 60 to 90 min period. This result represented a totally different situation
325	compared with the other tests. According to the flow patterns in Fig. 12, it could be explained
326	that the fine sands flowed more fluently than the coarse ones. Furthermore, the flow of fine

327	sands under the insert space was similar to having a mass flow condition, which explained
328	why the tendency rose in the Test 6 condition. In this condition, the entire colored stagnant
329	zone diminished after 165 minutes. These results revealed that the optimal asymmetrical
330	design for a two-stage filter vessel offered a clear benefit.
331	
332 333	CONCLUSIONS
334	This paper analyzed the flow patterns in a two-dimensional, cross-flow moving granular
335	bed with the different geometry designs in a filter vessel. The two kinds of filter granules
336	consisted of coarse and fine silica sands. The results revealed that the flow pattern profiles of
337	filter granules were influenced by the vessel geometry, and the optimal design for two-stage
338	filter granules in a filter vessel was created to diminish the stagnant zone.
339	Six configuration setups of moving granular beds with two-stage filter granules were
340	tested. The length L, angle of θ_{1C} , θ_{2C} , θ_{1F} , and θ_{2F} were adjusted in order to obtain an optimal
341	design. According to the results, both of the filter vessel and flow-corrective insert in an
342	asymmetrical design might solve the plugging issues reported in several advanced research
343	works during tests. This study showed that the more suitable flow pattern results in the
344	optimal design of Test 6, demonstrated that the negligible stagnant zone diminished almost
345	completely under this condition with good flow behavior of the filter granules. Thus, the

346	configuration of Test 6 had been chosen for the development of a three-dimensional model of
347	a MGBF with two-stage filter granules. The current study could provide the industry with the
348	important parameters for a filter system with multi-stage process.
349	
350 351	ACKNOWLEDGEMENTS
352	The authors thankfully acknowledge the financial support of this study from the Ministry
353	of Science and Technology of Taiwan, ROC, through grant numbers MOST
354	106-3113-E-008-004.
355	
356 357	REFERENCES
358	Al-Naiema, I., Estillore, A. D., Mudunkotuwa, I. A., Grassian, V. H. and Stone, E. A. (2015).
359	Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel 162:
360	111–120.
361	Arnold, P. C., McLean, A. G. and Roberts A. W. (1978). Bulk Solids: Storage, Flow and Handling,
362	Tunra Bulk Solids Handling Research Associates, Australia.
363	Artun, G. K., Polat, N., Yay, O. D., Üzmez, Ö. Ö., Ari, A., Tuygun, G. T., Elbir, T., Altuğ, H.,
364	Dumanoğlu, Y., Döğeroğlu, T., Dawood, A., Odabasi, M. and Gaga, E. O. (2017). An
365	integrative approach for determination of air pollution and its health effects in a coal fired
366	power plant area by passive sampling. Atmos. Environ. 150: 331-345.
367	Baba, A., Gurdal, G. and Sengunalp, F. (2010). Leaching characteristics of fly ash from fluidized
368	bed combustion thermal power plant: Case study: Çan (Çanakkale-Turkey). Fuel Process.

- *Technol.* 91: 1073–1080.
- Brown, R. C., Shi, H., Colver, G. and Soo, S. C. (2003). Similitude study of a moving bed
 granular filter. *Powder Technol.* 138: 201–210.
- 372 Chen, Y. S., Hsiau, S. S., Lai, S. C., Chyou, Y. Pi., Li, H. Y. and Hsu, C. J. (2009). Filtration of
- dust particulates with a moving granular bed filter. *J. Hazard. Mater.* 171: 987–994.
- Chou, C. S., Tseng, C. C., Hsiau, S. S., Tsai, H. H., Smid, J., Kuo, J. T. (2000). Numerical
- 375 simulation of flow patterns of disks in dorfan impingo filter for gas cleanup. *Proc. Natl. Sci.*376 *Counc. Repub. China B* 24: 226–237.
- 377 Chou, C. S., Tseng, C. Y., Smid, J., Kuo, J. T., Hsiau, S. S. (2000). Numerical simulation of flow
- patterns of disks in the asymmetric louvered–wall moving granular filter bed. *Powder Technol.*110: 239–245.
- Chyou, Y. P., Smid, J., Hsiau, S. S., Chang C. W. and Huang T. C. (2011). Compact two–stage
 granular moving bed apparatus, US Patent, Application Number: 13/087066.
- Hsiau, S. S., Smid, J., Tsai, H. H., Kuo, J. T. and Chou, C. S. (2000). Flow patterns and velocity
- fields of granular in Dorfan Impingo filters for gas cleanup. *Chem. Eng. Sci.* 55: 4481–4494.
- Hsiau, S. S., Smid, J., Tsai, F. H., Kuo, J. T. and Chou, C. S. (2001). Velocities in moving
 granular bed filter. *Powder Technol.* 114: 205–212.
- Hsiau, S. S., Smid, J., Tsai, S. A., Tzeng, C. C. and Yu, Y. J. (2008). Flow of filter granules in
 moving granular beds with louvers and sublouvers. *Chem. Eng. Process.* 47: 2084–2097.
- Hsiau, S. S., Smid, J., Wang, C. Y., Kuo, J. T., and Chou, C. S. (1999). Velocity profiles of
 granules in moving bed filters. *Chem. Eng. Sci.* 54: 293–301.
- 390 Ives, K. J. (Ed.) (1975). *The sci. basis filtr.*, Noordhoof, Netherlands.
- Jung, Y. and Tien, C. (1991). New correlations for predicting the effect of deposit on collection
 efficiency and pressure drop in granular filtration. *J. Aerosol Sci.* 22: 187–200.
- 393 Jung, Y. and Tien, C. (1992). Increase in collector efficiency due to deposition in polydispersed

- 394 granular filtration–an experimental study. J. Aerosol Sci. 23: 525–537.
- Jenike, A. W. (1964). *Storage and flow of solids*, Bulletin No. 123, Utah Engng. Exp. Station,
 University of Utah, Salt Lake City, Utah, USA.
- Johanson, J. R. (1966). The use of flow–corrective inserts in bins. *Trans. ASME, J. Eng. Ind. Series B* 88: 224–230.
- Johanson, J. R. and Kleysteuber, W. K. (1966). Flow corrective inserts in bins. *Chem. Eng. Prog.*62: 79–83.
- Johanson, J. R. (1967/68). The placement of inserts to correct flow in bins. *Powder Technol*. 1(6):
 328–333.
- Kuo, J. T., Smid, J., Hsiau, S. S. and Chou, C. S. (1998). Granular bed filter technology. *Proc. Natl. Sci. Counc. Repub. China. Part A* 22: 17–34.
- Kuo, J. T., Smid, J., Hsiau, S. S., Wang, C. Y., and Chou, C. S. (1998). Stagnant zones in granular
 moving bed filter for flue gas cleanup. *Filtr. Sep.* 35: 529–534.
- 407 Li, Z., Chen, L., Liu, S., Ma, H., Wang, L., An, C. and Zhang, R. (2016). Characterization of
- 408 PAHs and PCBs in fly ashes of eighteen coal-fired power plants. *Aerosol Air Qual. Res.* 16:
 409 3175–3186.
- Mizukami, S., Wakabayashi, M. and Murata, H. (1987). Interaction between pressure drop of gas
 and flow of medium in a moving granular bed filter. *Part. Sci. Technol.*5: 131–142.
- 412 Roberts, A. W. (1995). 100 years of Janssen. In Proceedings of the 3rd European Symposium:
 413 Storage and Flow of Particulate Solids, Nurnberg, 21–23 March, pp. 7–44.
- 414 Saxena, S. C., Henry, R. F. and Podolski, W. F. (1985). Particulate removal from high415 temperature, high-pressure combustion gases. *Prog. Energy Combust. Sci.*11: 193–251.
- 416 Sax, S. N., Zu, K. and Goodman, J. E. (2013). Air pollution and lung cancer in Europe. *Lancet*417 *Oncol.* 14: e439–e440.
- 418 Smid, J., Hsiau, S. S., Tsai, S. A., Tzeng, C. C. and Chyou, Y. P. (2009). Study on gravity flow of

419	granules in beds supported by louver-sublouver system. Adv. Powder Technol. 20: 127-138.
420	Smid, J., Hsiau, S. S., Chyou, Y. P., Huang, T. C. and Liu, T. C. (2012). Flow patterns and
421	velocity fields in two-dimensional thin slice panel with flow-corrective insert. Adv. Powder
422	<i>Technol.</i> 23: 548–557.
423	Stanghelle, D., Slungaard, T. and Sønjua, O. K. (2007). Granular bed filtration of high
424	temperature biomass gasification gas. J. Hazard. Mater. 144: 668–672.
425	Yang, G. H., Zhou, J. H. (2007). Experimental study on a new dual-layer granular bed filter for
426	removing particulates. J. China Univ. of Mining & Tech. 17:201–204.
427	Zevenhoven, R. and Kilpinen, P. (2001). Control of pollutants in flue gases and fuel gases,
428	Helsinki University of Technology, Espoo, Finland.
	A CERTIFIC MARY

430 NOMENCLATURE

- 431
- 432 L Left/right plate length of flow-corrective insert.
- 433 A_R Residual stagnant zone of colored filter granules.
- 434 A_A Total area of filter granules.
- 435 A_{RC} Residual stagnant zone of coarse colored filter granules.
- 436 A_{RF} Residual stagnant zone of fine colored filter granules.
- 437
- 438 *Greek symbols*
- 439 $\alpha_{c.r.}$ Critical angle obtained from Johanson's theory.
- 440 θ_{1C} Filter slope angle of coarse sands on left side of granular bed.
- 441 θ_{2C} Insert slope angle of coarse sands on left side of granular bed.
- 442 θ_{1F} Filter slope angle of fine sands on right side of granular bed.
- 443 θ_{2F} Insert slope angle of fine sands on right side of granular bed.