Supplementary Materials

Table Captions

Table S1. The campaigns of the study and average values of meteorological parameters.

Table S2. Mean mass concentration in neq m\(^{-3}\) of water soluble ions.

Table S3. Statistics for metals indoor and outdoor concentrations for PM10.
Table S1. The campaigns of the study and average values of meteorological parameters.

<table>
<thead>
<tr>
<th>Period</th>
<th>PM fraction</th>
<th>Sampling site</th>
<th>Sampling time period</th>
<th>Number of filters</th>
<th>Chemical Analysis</th>
<th>Meteorological conditions (average values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM10</td>
<td>indoors & outdoors</td>
<td>period A= 00:00-12:00</td>
<td>40 indoors & 40 outdoors</td>
<td>ions QC/EC metals</td>
<td>Temp. (°C)</td>
</tr>
<tr>
<td>Campaign 1</td>
<td>22/12/2012-11/1/2013</td>
<td>✓ ✓ ✓ ✓</td>
<td>24h</td>
<td>✓ ✓ ✓</td>
<td>8.8±3.3</td>
<td>72±13</td>
</tr>
<tr>
<td>Campaign 2</td>
<td>12/1/2013-28/1/2013</td>
<td>PM2.5</td>
<td>✓ ✓ ✓ ✓</td>
<td>31 indoors & 31 outdoors</td>
<td>✓ ✓</td>
<td>10±2.9</td>
</tr>
<tr>
<td>Campaign 3</td>
<td>31/1/2013-31/2/2013</td>
<td>PM2.5</td>
<td>✓ ✓</td>
<td>16 outdoors</td>
<td>✓ ✓</td>
<td>11±2.1</td>
</tr>
</tbody>
</table>
Table S2. Mean mass concentration in neq m\(^{-3}\) of water soluble ions.

<table>
<thead>
<tr>
<th></th>
<th>PM10 (Campaign 1)</th>
<th></th>
<th>PM2.5 (Campaign 2)</th>
<th></th>
<th>PM2.5 (Campaign 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(neq m(^{-3}))</td>
<td>in out in out</td>
<td>in out</td>
<td>in out</td>
<td>in out</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>13.3</td>
<td>27.9 13.9</td>
<td>22.3</td>
<td>12.8</td>
<td>32.7</td>
</tr>
<tr>
<td>NO(_3^)(^-)</td>
<td>24.1</td>
<td>52.8 24.9</td>
<td>46.6</td>
<td>23.4</td>
<td>58.3</td>
</tr>
<tr>
<td>PO(_4^{3-})</td>
<td>47.7</td>
<td>50.7 43.9</td>
<td>45.8</td>
<td>51.5</td>
<td>54.7</td>
</tr>
<tr>
<td>SO(_4^{2-})</td>
<td>71.6</td>
<td>103 69.8</td>
<td>94.1</td>
<td>73.3</td>
<td>111.4</td>
</tr>
<tr>
<td>sum</td>
<td>163</td>
<td>241 159</td>
<td>215</td>
<td>168</td>
<td>264</td>
</tr>
<tr>
<td>NH(_4^+)</td>
<td>43.9</td>
<td>70 46</td>
<td>67.4</td>
<td>41.6</td>
<td>72.7</td>
</tr>
<tr>
<td>K(^+)</td>
<td>19.2</td>
<td>23.6 19.5</td>
<td>17.7</td>
<td>19.1</td>
<td>25.9</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>10</td>
<td>10.8 8.76</td>
<td>10.4</td>
<td>9.24</td>
<td>12.2</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>114</td>
<td>96 73.1</td>
<td>79.1</td>
<td>71.7</td>
<td>106</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>76.5</td>
<td>77.8 66.1</td>
<td>69.9</td>
<td>71.3</td>
<td>83.9</td>
</tr>
<tr>
<td>sum</td>
<td>263</td>
<td>278 213</td>
<td>244</td>
<td>213</td>
<td>301</td>
</tr>
<tr>
<td>Cneq/Aneq</td>
<td>1.61</td>
<td>1.15 1.34</td>
<td>1.14</td>
<td>1.27</td>
<td>1.14</td>
</tr>
</tbody>
</table>
Table S3. Statistics for metals concentration in PM10 (in μg m\(^{-3}\)).

<table>
<thead>
<tr>
<th></th>
<th>A+B</th>
<th></th>
<th></th>
<th>A</th>
<th></th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>out</td>
<td>in</td>
<td>out</td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>2.8E-02</td>
<td>2.3E-02</td>
<td>1.6E-02</td>
<td>3.8E-02</td>
<td>2.7E-02</td>
<td>2.0E-02</td>
</tr>
<tr>
<td>stdev</td>
<td>2.9E-02</td>
<td>2.0E-02</td>
<td>1.4E-02</td>
<td>3.5E-02</td>
<td>2.0E-02</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>4.8E-03</td>
<td>6.0E-03</td>
<td>4.7E-03</td>
<td>4.8E-03</td>
<td>6.9E-03</td>
<td>5.8E-03</td>
</tr>
<tr>
<td>stdev</td>
<td>3.4E-03</td>
<td>4.9E-03</td>
<td>2.0E-03</td>
<td>3.7E-03</td>
<td>2.3E-02</td>
<td>2.3E-02</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>2.2E-02</td>
<td>2.1E-02</td>
<td>2.7E-02</td>
<td>1.9E-02</td>
<td>1.9E-02</td>
<td>1.9E-02</td>
</tr>
<tr>
<td>stdev</td>
<td>1.9E-02</td>
<td>1.2E-02</td>
<td>2.7E-02</td>
<td>1.1E-02</td>
<td>8.1E-03</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>5.8E-03</td>
<td>7.4E-03</td>
<td>6.1E-03</td>
<td>5.7E-03</td>
<td>7.8E-03</td>
<td>7.8E-03</td>
</tr>
<tr>
<td>stdev</td>
<td>2.1E-03</td>
<td>3.5E-03</td>
<td>2.3E-03</td>
<td>3.2E-03</td>
<td>2.0E-03</td>
<td>3.7E-03</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>2.0E-04</td>
<td>2.0E-04</td>
<td>2.0E-04</td>
<td>2.0E-04</td>
<td>2.0E-04</td>
<td>2.0E-04</td>
</tr>
<tr>
<td>stdev</td>
<td>1.0E-04</td>
<td>1.0E-04</td>
<td>1.0E-04</td>
<td>1.0E-04</td>
<td>1.0E-04</td>
<td>1.0E-04</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>1.2E-01</td>
<td>1.2E-01</td>
<td>1.0E-01</td>
<td>1.3E-01</td>
<td>1.3E-01</td>
<td>1.3E-01</td>
</tr>
<tr>
<td>stdev</td>
<td>8.3E-02</td>
<td>8.2E-02</td>
<td>8.0E-02</td>
<td>8.5E-02</td>
<td>7.7E-02</td>
<td>7.7E-02</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>7.8E-01</td>
<td>7.9E-01</td>
<td>7.1E-01</td>
<td>6.9E-01</td>
<td>8.5E-01</td>
<td>8.7E-01</td>
</tr>
<tr>
<td>stdev</td>
<td>6.3E-01</td>
<td>5.0E-01</td>
<td>6.6E-01</td>
<td>4.5E-01</td>
<td>6.1E-01</td>
<td>5.3E-01</td>
</tr>
</tbody>
</table>
Figure Captions

Figure S1 (a). Relationship between indoor and outdoor OC for PM10

Figure S1 (b). Relationship between indoor and outdoor EC for PM10

Figure S1 (c). Relationship between indoor and outdoor OC for PM2.5

Figure S1 (d). Relationship between indoor and outdoor EC for PM2.5
Fig. S1 (a)

\[y = 0.5135x + 5.3155 \]

\[R^2 = 0.7411 \]
Fig. S1 (b)

\[y = 0.6175x + 0.7185 \]

\[R^2 = 0.7341 \]
Fig. S1 (c)

$y = 0.622x + 3.4456$

$R^2 = 0.6595$
Fig. S1 (d)

\[y = 0.7859x + 0.3931 \]

\[R^2 = 0.5689 \]