Sources	Emission factors	Units	References
Crude oil exploration	0.6	kg/t	(Wei et al., 2008)
Natural gas exploration	0.5	kg/t	
Tank loss	0.5	kg/t turnover	(Ning, 2010)
Transport loss	15	kg/t (production raw	
	1.5	material average turnover)	
Leakage loss(odors)	2.4	kg/t the processing of crude	
	2.1	oil	
Leakage loss(normal)	0.8	kg/t the processing of crude	
		oil	
Volatile refining	0 12	kg/t the processing of crude	
wastewater	0.12	oil	
Fthylene	0.5	kg/t Product	((Taiwan), 2012;
	0.0	ng ti iouuot	Chen Yin, 2012)
			((Taiwan), 2012;
Methyl alcohol	5.75	kg/t Product	Yang, 2012; Ying
			Chen et al., 2012)
			((Taiwan), 2012;
Benzene	0.55	kg/t Product	Ying Chen et al.,
			2012)
			((Taiwan), 2012;
Synthesis ammonia	4.72	kg/t Product	Ying Chen et al.,
			2012)
Storage &			(Yang, 2012)
transportation of Crude	0.54	kg/t Product	
oil-Made in China			
Storage &	0.88	kg/t Product	

Table S1. Emission factors and activity data of different sources

Sources	Emission	Units	References
Sources	factors	Units	Keterences
transportation of Crude			
oil-Import			
Storage &			
transportation of Crude	0.51	kg/t Product	
oil-Export			
Storage &			
transportation of	4.54	kg/t Product	
gasoline-Made in China			
Storage &			
transportation of	4.49	kg/t Product	
gasoline-Import			
Storage &			
transportation of	4.22	kg/t Product	
gasoline-Export			
Storage &			
transportation of other	2.46	kg/t Product	
oil-Made in China			
Storage &			
transportation of other	3.06	kg/t Product	
oil-Import			
Storage &			
transportation of other	1.84	kg/t Product	
oil-Export			
Storage &			
transportation of	3.1	kg/t Product	
solvent-Made in China			
Storage &	3.6	kg/t Product	

Sources	Emission factors	Units	References
transportation of			
solvent-Import			
Storage &			
transportation of	3.2	kg/t Product	
solvent-Export			
			(Huang et al., 2011;
Monufacture of point	15	leg/t Drochust	Wei, 2009; Yang,
Manufacture of paint	15	kg/t Product	2012; Ying Chen et
			al., 2012)
Manafastan afasintina	(0	las /4 Des das 4	(Yang, 2012; Ying
Manufacture of printing	60	kg/t Product	Chen et al., 2012)
Polyethylene resin	8	kg/t Product	(USEPA, AP-42)
PVC resins	8.5	kg/t Product	
ABS resins	1.4	kg/t Product	(EEA)
Other resins	2.2	kg/t Product	
Synthetic rubber	7.39	kg/t Product	(Yang, 2012; Ying Chen et al., 2012)
Polyester	0.6	kg/t Product	((Taiwan), 2012)
Chinlon	3.75	kg/t Product	
Acrylic fibers	125.1	kg/t Product	
Vinylon	7.7	kg/t Product	
Spandex	40	kg/t Product	
Cellulose acetate fiber	145.2	kg/t Product	
Other fiber	5.1	kg/t Product	
Other adhesive	8	kg/t Product	(Ying Chen et al.,
Water-based adhesive	0.5	kg/t Product	2012)
Vegetable oil refining	2.45	kg/t Product	(Cheng et al., 2012;

Sources	Emission	Units	References
	factors		
			Ying Chen et al.,
			2012)
Second Second	0.(las // Due due t	(Ying Chen et al.,
Sugar renning	0.0	kg/t Ploduct	2012)
Fermentation alcohol	32.1	kg/kL alcohol	((Taiwan), 2012)
Wine	16.26	kg/kL Wine	(Ying Chen et al.,
Beer	0.43	kg/kL beer	2012)
Chemical raw materials	114.14	kg/t Product	((Taiwan), 2012)
Chemical pesticide	146	kg/t Product	
Manufacture of	0.025	kg/t Droduct	(Ying Chen et al.,
Commodity	0.025	kg/t Ploduct	2012)
			(Cheng et al., 2012;
T	0.28	kg/tyre	Klimont et al.,
Iyre			2002; Ying Chen et
			al., 2012)
Textile Dyeing	98	kg/t Product	((Taiwan), 2012)
DUsize	245	kg/t Droduct	(Ying Chen et al.,
PU Size	243	kg/t Ploduct	2012)
Shoo adhasiya	670	ka/t P roduct	(Ying Chen et al.,
Shoe autesive	070	kg/t110duct	2012)
Planographic printing	216	kg/t Product	(Yang, 2012)
Gravure printing	620	kg/t Product	
Relief printing	100	kg/t Product	
Porous printing	683	kg/t Product	
Other printing	750	kg/t Product	
Packaging adhesive	1295	ka/t Dradust	(Ying Chen et al.,
r ackaging aunesive	1505	kg/t r10uuci	2012)

Sources	Emission	Units	References
	factors		
Binding adhesive	89	kg/t Product	(Yang, 2012)
Wood adhesive	89	kg/t Solvent consumption	(Ying Chen et al., 2012)
Wood paintings			(Wei et al., 2008)
(furniture	640	kg/t Solvent consumption	
manufacturing)			
Coiled material paintings	455	kg/t Solvent consumption	(Ying Chen et al., 2012)
Anti-corrosive paintings	440	kg/t Solvent consumption	
Ship paintings	442	kg/t Solvent consumption	
Other paintings	750	kg/t Solvent consumption	
Assembling adhesive	89	kg/t Solvent consumption	(Ying Chen et al., 2012)
Transport equipment manufacturing paintings	470	kg/t Solvent consumption	(Wei et al., 2008)
Transport equipment manufacturing adhesive	89	kg/t Solvent consumption	(Ying Chen et al., 2012)
Coating for Exterior Walls	180	kg/t Solvent consumption	(Wei, 2009)
Coating for other building	590	kg/t Solvent consumption	
Wood paintings			
(architecture	640	kg/t Solvent consumption	
decoration)			
Assembling adhesive	62	kg/t Solvent consumption	(Ying Chen et al., 2012)

Sources	Emission	Units	Dafarancas
Sources	factors	Units	Kelerences
Tetrachloroethylene	1000	kg/t Solvent consumption	((Taiwan), 2012; USEPA, AP-42; Ying Chen et al., 2012)
Diode / Transistor	0.155	kg/thousands	((Taiwan), 2012)
Printed circuit board (PCB)	0.026	kg/m ²	
Copper clad laminate	0.1	kg/m ² Product	(Yang, 2012)
Coke	1.25	kg/t Product	(China, 1990)
Pulp	0.25	kg/t Pulp	
Paper products	0.1	kg/t Product	
Sanitary landfill	0.23	kg/t Rubbish	(EEA; Wei et al.,
Composting	0.74	kg/t Rubbish	2008)
MSW incineration	0.74	kg/t Rubbish	
Coal for thermal power	0.15	kg/t Fuel	(Cheng et al., 2012;
Fuel Oil for thermal power	0.13	kg/t Fuel	Ying Chen et al., 2012)
Liquefied petroleum gas for thermal power	66	g/m ³ Fuel	
Natural gas for thermal power	0.18	g/m ³ Fuel	
Coal for heat supply	0.19	kg/t Fuel	
Fuel Oil for heat supply	66	kg/t Fuel	
Liquefied petroleum gas	0.18	g/m ³ Fuel	
Natural gas for heat supply	0.18	g/m ³ Fuel	

Sources	Emission factors	Units	References
Coal for industrial consumption	0.18	kg/t Fuel	(Wei et al., 2008)
Fuel Oil for industrial consumption	0.15	kg/t Fuel	(Yang, 2012)
Coal gas for industrial consumption	0.00044	g/m ³ Fuel	
Liquefied petroleum gas for industrial consumption	66	g/m ³ Fuel	
Natural gas for industrial consumption	0.18	g/m ³ Fuel	

Table S2. The control technologies and removal efficiency for sources.

Sources	Control technologies	Removal efficiency
Petroleum refining	Thermal combustion	60%-95%
Storage and transport	Oil and gas recovering system	80%-95%
Furniture	Rotary adsorption-concentration	720/ 000/
Manufacturing	and combustion	/ 3%0-89%0
Chinery equipment manufacturing	Catalytic combustion	72%-85%
Transportation		
Equipment	Catalytic combustion	75%-85%
Manufacturing		

Sources	Control technologies	Removal efficiency
Architectural ornament	Environmentally friendly materials	55%-70% ^a
Coke production	Condensation separation/Catalytic combustion	70%-85%
Chemical raw materials	Adsorption/condensation separation/ catalytic combustion	70%-90%
Chemical pesticide	Adsorption/condensation separation/ catalytic combustion	70%-90%
Textile Dyeing	Adsorption concentration and catalytic combustion	70%-85%
Printing Industry	Adsorption separation/ catalytic combustion/ Environmentally friendly materials	75%-85%/70% ^a
Dry cleaning of clothing	Condensation separation	70%-85%
Basic chemical raw materials manufacturing	Thermal combustion / Adsorption separation /RTO	70%-98%
Manufacture of food & drink	Adsorption / biological	70%-85%
Synthetic leather	Activated carbons adsorption/ catalytic combustion	70%-85%
Shoemaking industry	Adsorption concentration and catalytic combustion	70%-85%
Synthetic fiber	Activated carbons adsorption	55-60%
Tire	Adsorption concentration and	65-70%

Sources	Control technologies	Removal efficiency	
	catalytic combustion		
Wood processing	Environmentally friendly	70% ^a	
wood processing	materials	7070	

^a represents the equivalent efficiency of using environmentally friendly materials