Supplementary Information

Authors:

Liqiang He, Jingnan Hu^{*}, Shaojun Zhang, Ye Wu^{*}, Xing Guo, Jinghao Song, Lei Zu, Xuan Zheng, Xiaofeng Bao

* Corresponding authors: hujn@craes.org.cn, ywu@tsinghua.edu.cn

Manuscript Title:

Investigating real-world emissions of China's heavy-duty diesel trucks: Can SCR effectively mitigate NO_X emissions for highway trucks?

Summary of Supplementary information:

[1 Figure and 1 Table]

[4 Pages including the cover sheet]

Table S1. Supplementary information of tested diesel trucks and diesel quality.

Vehicle No.	Tested place	Model year	Tested year	Emission standard	Diesel quality ^a	
					Fuel	Sulfur
					standard	contents
II-1	Beijing	2006	2013	Euro II	China IV	<50 ppm
II-2	Beijing	2007	2013	Euro II	China IV	<50 ppm
II-3	Beijing	2007	2013	Euro II	China IV	<50 ppm
II-4	Beijing	2008	2013	Euro II	China IV	<50 ppm
II-5	Beijing	2007	2013	Euro II	China IV	<50 ppm
III-1	Beijing	2010	2013	Euro III	China IV	<50 ppm
III-2	Beijing	2008	2013	Euro III	China IV	<50 ppm
III-3	Beijing	2010	2013	Euro III	China IV	<50 ppm
III- 4	Beijing	2010	2013	Euro III	China IV	<50 ppm
III-5	Beijing	2012	2013	Euro III	China IV	<50 ppm
IV-1	Guangdong	2009	2010	Euro IV	China III	<350 ppm
IV-2	Guangdong	2009	2010	Euro IV	China III	<350 ppm
IV-3	Guangdong	2009	2010	Euro IV	China III	<350 ppm
IV-4	Beijing	2013	2014	Euro IV	China IV	<50 ppm
IV-5	Beijing	2014	2014	Euro IV	China IV	<50 ppm
IV-6	Beijing	2014	2014	Euro IV	China IV	<50 ppm

Note: ^a In accordance with the requirement of the regulations regarding real-world emissions measurement, market fuel from the certified refueling stations was used and the fuel quality complied with China III or China IV standard. The difference is mostly sulfur content (<350 ppm for China III and <50 ppm for China IV) (AQSIQ and SAC, 2009 and 2013), but the vanadium-based SCR systems have a relatively high tolerance to sulfur content (e.g., up to 350 ppm) (Walker et al., 2004; Jiang et al, 2010).

Fig. S1 Weighted fuel-based (a) and distance-based (b) NO_X emission factors for each tested Euro IV HDDT. NO_X is presented as the sum of NO and NO_2 , which are also shown separately.

Note: In recent years, individual truck weights in China's truck fleet have significantly increased. Wu et al., (2016) reported that heavier HDDT samples would result in relatively high fuel consumption and distance-based NO_X emission (e.g., Fig. S1 (b)). However, the fuel-based emission factor might eliminate effects of vehicle size (e.g., engine power rating and/or GVW) between each of the tested trucks, as shown as Fig. S1 (a).

References

- General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), Standardization Administration (SAC), 2009. GB 19147-2009 Automobile diesel fuels (in Chinese).
- General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), Standardization Administration (SAC), 2013. GB19147-2013 Automobile diesel fuels (in Chinese).
- Walker A P, Blakeman P G, Ilkenhans T, Magnusson B, McDonald A C, Kleijwegt P, Stunnenberg F, Sanchez M (2004) The Development and In-Field Demonstration of Highly Durable SCR Catalyst Systems. SAE Technical Paper 2004-01-1289
- Jiang L., Ge Y., Shah A., He C. and Liu Z. (2010). Unregulated emissions from a diesel engine equipped with vanadium-based urea-SCR catalyst. Journal of Environmental Sciences, 22(4): 575-581.
- Wu X., Wu Y., Zhang S., Liu H., Fu L. and Hao J. (2016). Assessment of vehicle emission programs in China during 1998–2013: achievement, challenges and implications. Environmental Pollution, 214: 556-567.