OPEN ACCESS

Articles online

Enhanced Low-temperature NH3-SCR Activity over Ce-Ti Oxide Catalysts by Hydrochloric Acid Treatment

Category: Aerosol Physics and Instrumentation

Volume: 19 | Issue: 11 | Pages: 2381-2386
DOI: 10.4209/aaqr.2019.04.0184
PDF

Export Citation:  RIS | BibTeX

To cite this article:
Jiang, Y., Shi, W., Lu, M., Li, Q., Lai, C., Gao, W., Yang, L. and Yang, Z. (2019). Enhanced Low-temperature NH3-SCR Activity over Ce-Ti Oxide Catalysts by Hydrochloric Acid Treatment. Aerosol Air Qual. Res. 19: 2381-2386. doi: 10.4209/aaqr.2019.04.0184.

Ye Jiang 1, Weiyun Shi1, Mingyuan Lu1, Qingyi Li2, Chengzhen Lai1, Wenqian Gao1, Lin Yang1, Zhengda Yang 1

  • 1 College of New Energy, China University of Petroleum, Qingdao 266580, China
  • 2 Zhejiang Energy Group Co., Ltd., Hangzhou 310007, China

Highlights

  • Enhanced low-temperature SCR activity of Ce-Ti oxide treated by hydrochloric acid.
  • Increase in the amount of Ce3+ and chemisorbed oxygen on the catalyst surface.
  • The enhanced Lewis acidity was beneficial to adsorb more NH3.

Abstract

The effect of hydrochloric acid treatment on Ce-Ti oxides was investigated for selective catalytic reduction of NO with NH3. The results showed that hydrochloric acid treatment had a positive effect on the low-temperature activity of Ce-Ti oxides. The improved activity of Ce-Ti oxides could be attributed to the increase in the concentration of Ce as well as the amount of Ce3+ and chemisorbed oxygen on the catalyst surface. In addition, the enhanced Lewis acidity could improve NH3 absorption, and was also a key factor to enhance the low-temperature activity of Ce-Ti oxides.

Keywords

NH3-SCR Ce-Ti oxide Hydrochloric acid treatment Activity


Related Article

Influence of Dilution System and Electrical Low Pressure Impactor Performance on Particulate Emission Measurements from a Medium-scale Biomass Boiler

Jordi F.P. Cornette , Thibault Coppieters, Dominique Desagher, Jurgen Annendijck, Hélène Lepaumier, Nathalie Faniel, Igor Dyakov, Julien Blondeau, Svend Bram

Estimation of Surface Particulate Matter (PM2.5 and PM10) Mass Concentrations from Ceilometer Backscattered Profiles

Avinash N. Parde, Sachin D. Ghude , Prakash Pithani, Narendra G. Dhangar, Sandip Nivdange, Gopal Krishna, D.M. Lal, R. Jenamani, Pankaj Singh, Chinmay Jena, Ramakrishna Karumuri, P.D. Safai, D.M. Chate
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.08.0371
PDF
;