Articles online

Aerosol Chamber Characterization for Commercial Particulate Matter (PM) Sensor Evaluation

Category: Aerosol Physics and Instrumentation

Article In Press
DOI: 10.4209/aaqr.2017.12.0611

Export Citation:  RIS | BibTeX

Dian Ahmad Hapidin1,3, Casmika Saputra1,3, Dian Syah Maulana1,3, Muhammad Miftahul Munir 1,2,3, Khairurrijal Khairurrijal 1,2,3

  • 1 Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • 2 Research Center for Biosciences and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • 3 Research Center for Disasters Mitigation, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung 40132, Indonesia


PM concentration decay inside an aerosol chamber was studied.
An empirical formula for describing PM concentration decay profile was obtained.
The empirical formula predicted the experiment time and the number of data points.
PM sensors performance evaluation procedures inside the aerosol chamber was presented.
PM sensor linearity, calibration curve, and precision were characterized.


The negative impact of PM2.5 exposure has encouraged the development of scattering-based PM sensors for monitoring the PM level spatially and temporally. These PM sensors excel in terms of cost, operating power, and compactness, but the performance of each model needs to be evaluated individually. The evaluation of a PM sensor can be conducted inside an aerosol chamber by measuring the PM concentration in time series using both the sensor and reference monitors. However, earlier experimental processes were time-consuming, as a long time was needed to decrease the PM concentration by loss mechanisms. We designed an aerosol chamber by introducing an output airflow rate to decay the PM concentration more quickly. The characterization of the chamber yielded an empirical equation to describe the PM concentration decay profile, which can be used to predict the measurement time and the number of data points. The chamber was then utilized to evaluate three PM sensors (Sharp GP2Y1010AU0F, Winsen ZH03A, and Novafitness SDS011). A condensation particle counter (TSI, 3025A) and particle sensor (Honeywell, HPMA115S0-XXX) were employed as reference monitors. The evaluation determined the linearity, calibration curve, and precision of the PM sensors. The evaluated models showed excellent linearity, with R2 values above 0.956. The least square and RMA correlation of the evaluated PM sensors demonstrated the best linearity achieved at a low PM measurement range (0–400 µg m–3). As the Winsen ZH03A and Novafitness SDS011 sensors had coefficients of variation below 10%, both of the sensors have an acceptable precision according to the EPA standard.


Aerosol chamber Air pollution Particulate matter PM2.5 monitor PM sensor

Related Article

Development and Performance Evaluation of a Porous Tube Dilutor for Real-time Measurements of Fine Particles in High-humidity Environments

Chang Gyu Woo, Ki-Jung Hong, Hak-Joon Kim, Yong-Jin Kim, Bangwoo Han , Jeongeun An, Su Ji Kang, Sung-Nam Chun
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.08.0319

Electrochemical Detection of Airborne Influenza Virus using Air Sampling System

Hyeong-U Kim, Junhong Min, Geunsang Park, Dongjoo Shin, Giwoon Sung, Taesung Kim , Min-Ho Lee

A Study on Electrical Charge Distribution of Aerosol Using Gerdien Ion Counter

Yun-Haeng Joe, Joonmok Shim, Il-Kyoung Shin, Se-Jin Yook, Hyun-Seol Park
Article In Press
DOI: 10.4209/aaqr.2018.08.0309