Articles online

PM2.5-Bound PAHs in Indoor and Outdoor of Hotels in Urban and Suburban of Jinan, China: Concentrations, Sources, and Health Risk Impacts

Category: Air Pollution and Health Effects

Volume: 17 | Issue: 10 | Pages: 2463-2473
DOI: 10.4209/aaqr.2017.08.0286
PDF | RIS | BibTeX

Yanyan Li1, Lingxiao Yang 1,3, Xiangfeng Chen4, Ying Gao2, Pan Jiang1, Junmei Zhang1, Hao Yu2, Wenxing Wang1

  • 1 Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
  • 2 School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
  • 3 Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu 210093, China
  • 4 Shandong Analysis and Test Center, Shandong Academy of Science, Jinan, Shandong 250014, China


PAHs in PM2.5 were characterized in indoor and outdoor of hotels in Jinan, China.
Coal/biomass and diesel/gasoline emissions greatly contributed to PAH concentrations.
The cancer risks of PAHs in outdoor were more severe than those in the indoor environment.
The cancer risks of PAHs in the urban areas were higher than those in the suburban areas.


The relationships between polycyclic aromatic hydrocarbons (PAHs) in PM2.5 in outdoor and indoor environments of hotels were examined in Jinan, China from January 6, 2016 to January 29, 2016. The mean concentrations of ∑PAHs for all sampling sites showed the following ascending order: suburban indoor (SUI, 39.58 ng m–3), first urban indoor near a busy traffic road (URI1; 3 m, 63.26 ng m–3), suburban outdoor (SUO, 67.96 ng m–3), urban outdoor (URO, 105.30 ng m–3), and second urban indoor far away from the traffic roads (URI2 > 320 m, 115.63 ng m–3). The indoor/outdoor (I/O) ratios of URI1 and SUI were all less than 1, indicating that the PAHs were mainly infiltrated from the outdoor environment. At URI2, 2-ring and some 3- and 4-ring PAHs were mainly produced indoors due to cooking, whereas the 5–7-ring PAHs were mainly infiltrated from the outdoor environment. The diagnostic ratios and principal component analysis indicated that emissions from combustion of coal, biomass, diesel fuel and gasoline were the main sources of PAHs in the study area. The impacts of health risk assessment of PAHs suggested that the health risks in the outdoor environment were more severe than those in the indoor environment and the health risks in urban area were significantly higher than those in the suburban area in Jinan.


PM2.5 PAHs Indoor-to-outdoor ratio Diagnostic ratio Health risk impacts

Related Article

Impact of Dust Storms on NPAHs and OPAHs in PM2.5 in Jinan, China, in Spring 2016: Concentrations, Health Risks, and Sources

Pan Jiang, Lingxiao Yang , Xiangfeng Chen, Ying Gao, Yanyan Li, Junmei Zhang, Tong Zhao, Hao Yu, Wenxing Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.08.0274

Commuting in Los Angeles: Cancer and Non-Cancer Health Risks of Roadway, Light-Rail and Subway Transit Routes

Christopher Lovett, Farimah Shirmohammadi, Mohammad H. Sowlat, Constantinos Sioutas
Article In Press
DOI: 10.4209/aaqr.2017.09.0331

Long-term Multiple Chemical Exposure Assessment for a Thin Film Transistor Liquid Crystal Display (TFT-LCD) Industry

Ying-Fang Wang, Shih-Min Wang, Yu-Chieh Kuo, Chungsik Yoon, Ya-Fen Wang, Perng-Jy Tsai
Volume: 17 | Issue: 11 | Pages: 2891-2900
DOI: 10.4209/aaqr.2017.08.0299

PM2.5 Meets Blood: in vivo Damages and Immune Defense

Xiangyu Zhang, Jingjing Kang, Haoxuan Chen, Maosheng Yao , Jinglin Wang
Article In Press
DOI: 10.4209/aaqr.2017.05.0167