Articles online

High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal

Category: Control Techniques and Strategy

Volume: 17 | Issue: 10 | Pages: 2555-2565
DOI: 10.4209/aaqr.2017.08.0282
PDF | RIS | BibTeX

Yu Huang1, Jun-Ji Cao1, Fei Kang2, Sheng-Jie You2, Chia-Wei Chang2, Ya-Fen Wang 2

  • 1 Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
  • 2 Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan


La-doped TiO2 photocatalysis was successfully synthesized via a facile method.
La-doped TiO2 can eliminate NO under visible light with high selectivity of NO2.
Samples were characterized by XRD, FTIR, DRS, BET and electrochemistry.
The photocatalytic mechanism for NO removal over La-doped TiO2 was speculated.


Semiconductors mediated by rare earth metals (REMs) have attracted attention with regard to the degradation of pollutants. In order to enhance the visible response of TiO2, La-doped TiO2 (La-TO) photocatalysts with visible-light-driven capacity for NO removal were successfully synthesized in this study via a facile sol-gel method followed by calcination. A series of La-TiO2 samples with differing weight ratios were evaluated for their photocatalytic performances. It was found that 3% La integrated with TiO2 (in mass ratio) could enhance the removal efficiency of NO (up to 32%) under solar light, which is more than twice that seen with pure TiO2. The resulting products were characterized by a series of techniques, such as XRD, FTIR, UV-vis DRS, BET and (photo)electrochemical analysis. The results indicated that La-doped TiO2 can harvest visible light due to the relatively narrow band gap (from 2.98 to 2.75 eV). More importantly, La dopant improved electron-hole separation and suppressed charge carrier recombination, due to the synergistic effect. Furthermore, La-doped TiO2 increased the photo-oxidation efficiency of the transformation from NO to NO3, owing to inhibition of the production of intermediate NO2 (0.02%). To the best of our knowledge, this study is the first time that La-doped TiO2 has been used to eliminate NO (at the ppb level) in the atmosphere. This study provides a facile and controllable route to fabricate La-TO photocatalyst for NO abatement with high selectivity of NO2 under visible light.


La-doped TiO2 photocatalysis NO removal

Related Article

Analysis of Reduction Potential of Primary Air Pollutant Emissions from Coking Industry in China

Yan Wang, Ke Cheng , He-Zhong Tian, Peng Yi, Zhi-Gang Xue
Volume: 18 | Issue: 2 | Pages: 533-541
DOI: 10.4209/aaqr.2017.04.0139
PDF | Supplemental material

Computer Simulation Studies of Structure Characteristics of Ordered Mesoporous Carbons and its Naphthalene Adsorption Performance

Keliang Wang, Mingli Fu, Junliang Wu, Guangying Zhou, Daiqi Ye
Volume: 18 | Issue: 2 | Pages: 542-548
DOI: 10.4209/aaqr.2016.12.0562

Improved Photocatalytic Air Cleaner with Decomposition of Aldehyde and Aerosol-Associated Influenza Virus Infectivity in Indoor Air

Kimiyasu Shiraki , Hiroshi Yamada, Yoshihiro Yoshida, Ayumu Ohno, Teruo Watanabe, Takafumi Watanabe, Hiroyuki Watanabe, Hidemitsu Watanabe, Masao Yamaguchi, Fumio Tokuoka, Shigeatsu Hashimoto, Masakazu Kawamura, Norihisa Adachi
Volume: 17 | Issue: 11 | Pages: 2901-2912
DOI: 10.4209/aaqr.2017.06.0220

Laboratory Evaluation of a Manure Additive for Mitigating Gas and Odor Releases from Layer Hen Manure

Ji-Qin Ni , Albert J. Heber, Teng T. Lim, Sam M. Hanni, Claude A. Diehl
Volume: 17 | Issue: 10 | Pages: 2533-2541
DOI: 10.4209/aaqr.2016.07.0327