OPEN ACCESS

Articles online

High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal

Category: Control Techniques and Strategy

Volume: 17 | Issue: 10 | Pages: 2555-2565
DOI: 10.4209/aaqr.2017.08.0282
PDF

Export Citation:  RIS | BibTeX

Yu Huang1, Jun-Ji Cao1, Fei Kang2, Sheng-Jie You2, Chia-Wei Chang2, Ya-Fen Wang 2

  • 1 Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
  • 2 Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan

Highlights

La-doped TiO2 photocatalysis was successfully synthesized via a facile method.
La-doped TiO2 can eliminate NO under visible light with high selectivity of NO2.
Samples were characterized by XRD, FTIR, DRS, BET and electrochemistry.
The photocatalytic mechanism for NO removal over La-doped TiO2 was speculated.


Abstract

Semiconductors mediated by rare earth metals (REMs) have attracted attention with regard to the degradation of pollutants. In order to enhance the visible response of TiO2, La-doped TiO2 (La-TO) photocatalysts with visible-light-driven capacity for NO removal were successfully synthesized in this study via a facile sol-gel method followed by calcination. A series of La-TiO2 samples with differing weight ratios were evaluated for their photocatalytic performances. It was found that 3% La integrated with TiO2 (in mass ratio) could enhance the removal efficiency of NO (up to 32%) under solar light, which is more than twice that seen with pure TiO2. The resulting products were characterized by a series of techniques, such as XRD, FTIR, UV-vis DRS, BET and (photo)electrochemical analysis. The results indicated that La-doped TiO2 can harvest visible light due to the relatively narrow band gap (from 2.98 to 2.75 eV). More importantly, La dopant improved electron-hole separation and suppressed charge carrier recombination, due to the synergistic effect. Furthermore, La-doped TiO2 increased the photo-oxidation efficiency of the transformation from NO to NO3, owing to inhibition of the production of intermediate NO2 (0.02%). To the best of our knowledge, this study is the first time that La-doped TiO2 has been used to eliminate NO (at the ppb level) in the atmosphere. This study provides a facile and controllable route to fabricate La-TO photocatalyst for NO abatement with high selectivity of NO2 under visible light.

Keywords

La-doped TiO2 photocatalysis NO removal


Related Article

Salinity-enhanced Release of Trace Metals from Sandstone and Variations in Mineral Compositions after Water-rock Interactions in the Presence of Supercritical CO2

Jiin-Shuh Jean, Huan-Wen Lin, Zhaohui Li, Huai-Jen Yang, Hsing-I Hsiang , Kenn-Ming Yang, Chien-Li Wang, Yun-Hwei Shen, Chun-Chih Kuo, Wen-Chin Kuo

Insights into the Effect of Adsorption–Desorption Cycles on SO2 Removal over an Activated Carbon

Shaojun Liu, Xinning Yu, Guoxin Lin, Ruiyang Qu, Chenghang Zheng, Xiang Gao
Article In Press
DOI: 10.4209/aaqr.2018.07.0269
PDF

Urban-scale SALSCS, Part II: A Parametric Study of System Performance

Qingfeng Cao, Minghua Huang, Thomas H. Kuehn, Lian Shen, Wen-Quan Tao, Junji Cao, David Y.H. Pui
;