Articles online

Effects of Surfactants on the Removal of Carbonaceous Matter and Dioxins from Weathered Incineration Fly Ash

Category: Control Techniques and Strategy

Volume: 17 | Issue: 9 | Pages: 2338-2347
DOI: 10.4209/aaqr.2017.08.0266
PDF | RIS | BibTeX

Han-Qiao Liu 1, Fang Liu1, Guo-Xia Wei2, Rui Zhang1, Yu-Wen Zhu1

  • 1 School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China
  • 2 School of Science, Tianjin Chengjian University, Tianjin 300384, China


Effect of surfactants on flotation effect of the weathered fly ash was studied.
The appropriate surfactant type and dose were determined.
The relationship between carbon removal and dioxin removal was demonstrated.


Our previous study demonstrated flotation to be effective in removing carbonaceous matter and dioxins from fresh fly ash in medical waste incinerators (MWIs). However, flotation of weathered fly ash seems to be difficult because of the oxidation of the ash surface and the presence of hydrophilic unburned carbon. Three types of surfactants namely nonionic Tween 80, anionic sodium dodecyl sulfate (SDS) and cationic CTAB were employed at different doses to improve flotation performance. Results indicated that Tween 80 exhibited superior decarburization performance compared with SDS and CTAB. The effect of surfactants on dioxin removal was found to correspond to the carbon removal from MWI fly ash. The optimal removal yields (90.6% of carbonaceous matter and 88.6% of dioxins) were obtained when 5% (w/w) Tween 80 was added. However, an excessive dose might cause the dissolution of dioxins.


Weathered fly ash Flotation Carbonaceous matter Dioxins Surfactant

Related Article

PCDD/F Formation in Milled Fly Ash: Metal Chloride Catalysis

Ishrat Mubeen, Xiaoqing Lin , Alfons Buekens, Xuan Cao, Shengyong Lu, Minghui Tang, Jianhua Yan
Volume: 17 | Issue: 11 | Pages: 2858-2866
DOI: 10.4209/aaqr.2017.08.0279
PDF | Supplemental material

Two-Step Flotation Treatment for Removal of Toxic Matter from Hospital Solid Waste Incinerator Fly Ash

Han-Qiao Liu , Fang Liu, Guo-Xia Wei, Rui Zhang, Dan-Dan Zang
Volume: 17 | Issue: 5 | Pages: 1329-1340
DOI: 10.4209/aaqr.2017.02.0090

Improved Photocatalytic Air Cleaner with Decomposition of Aldehyde and Aerosol-Associated Influenza Virus Infectivity in Indoor Air

Kimiyasu Shiraki , Hiroshi Yamada, Yoshihiro Yoshida, Ayumu Ohno, Teruo Watanabe, Takafumi Watanabe, Hiroyuki Watanabe, Hidemitsu Watanabe, Masao Yamaguchi, Fumio Tokuoka, Shigeatsu Hashimoto, Masakazu Kawamura, Norihisa Adachi
Volume: 17 | Issue: 11 | Pages: 2901-2912
DOI: 10.4209/aaqr.2017.06.0220

High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal

Yu Huang, Jun-Ji Cao, Fei Kang, Sheng-Jie You, Chia-Wei Chang, Ya-Fen Wang
Volume: 17 | Issue: 10 | Pages: 2555-2565
DOI: 10.4209/aaqr.2017.08.0282