Articles online

Integrated Analysis of Dust Transport and Budget in a Severe Asian Dust Event

Category: Aerosol and Atmospheric Chemistry

Volume: 17 | Issue: 10 | Pages: 2390-2400
DOI: 10.4209/aaqr.2017.05.0170
PDF | RIS | BibTeX

Yingying Jing, Peng Zhang , Lin Chen, Na Xu

  • National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA), Beijing 100081, China


The dust budget is quantitatively estimated by MERRA-2 data.
The dust emission and deposition were 6.3 Tg and 5.9 Tg respectively from April 28 to May 3, 2011.
A two-layered dust structure is found over the southeast China in this Asian Dust Event.


Asian dust storms markedly affect the ecosystem, environment, ocean biogeochemical cycle, and regional climate. Numerous measurements and model simulations have been performed to investigate the sources and transport of Asian dust. However, until now, few studies have performed a comprehensive quantification of the dust budget, resulting in significant uncertainty about the characterization of dust transport, emission, and deposition. In this study, a severe dust event in East Asia that occurred from April 28 till May 3, 2011, was analyzed in terms of dust transport characteristics based on multi-satellite observations and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In particular, the dust budget of the event was quantitatively estimated using a new atmospheric reanalysis dataset, namely the second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). The multi-satellite observations and models indicated that dust events such as this are uncommon. A two-layered dust structure was found in southeast China, the lower (< 1.5 km) and elevated (> 3 km) layers of which mainly originated from the Gobi and Taklimakan Deserts, respectively. The dust budget in East Asia, as estimated from MERRA-2, revealed a high dust mass loading (5.7–6.6 Tg) between 70°E and 140°E from April 29 till May 1, with the highest daily dust loading (approximately 6.6 Tg) reported on April 30. The total dust emission was 6.3 Tg over a 6-day period (April 28–May 3), and the maximum amount (nearly 5.9 Tg) of dust was deposited on the ground in the region. The dust flux amounts horizontally transported across the longitudinal boundary of 70°E and 140°E were 1.7 and 2.8 Tg, respectively.


Dust transport Dust layer Dust budget Dust loading

Related Article

Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland)

Grzegorz Majewski , Wioletta Rogula-Kozłowska, Katarzyna Rozbicka, Patrycja Rogula-Kopiec, Barbara Mathews, Andrzej Brandyk
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.06.0221

Pollution Characteristics of Water-Soluble Ions in Aerosols in Urban Area in Beibei of Chongqing

Yanpei Li, Qingju Hao, Tianxue Wen, Dongsheng Ji, Zirui Liu, Yuesi Wang, Xiaoxi Li, Xinhua He, Changsheng Jiang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0500

Evolution of Key Chemical Components in PM2.5 and Potential Formation Mechanisms of Serious Haze Events in Handan, China

Chengyu Zhang, Litao Litao Wang , Mengyao Qi, Xiao Ma, Le Zhao, Shangping Ji, Yu Wang, Xiaohan Lu, Qing Wang, Ruiguang Xu, Yongliang Ma
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0386

Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinctions in Seoul

Seung-Myung Park, In-Ho Song, Jong Sung Park, Jun Oh, Kwang Joo Moon, Hea Jung Shin, Jun Young Ahn, Min-Do Lee, Jeonghwan Kim, Gangwoong Lee
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0369