OPEN ACCESS

Articles online

In Situ FT-IR and DFT Study of the Synergistic Effects of Cerium Presence in the Framework and the Surface in NH3-SCR

Category: Aerosol and Atmospheric Chemistry

Article In Press
DOI: 10.4209/aaqr.2017.04.0148
PDF | RIS | BibTeX

Yinming Fan1, Wei Ling1, Lifu Dong1, Shihui Li1, Chenglong Yu1, Bichun Huang 1,2, Hongxia Xi3

  • 1 School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
  • 2 Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
  • 3 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China

Highlights

More nitrate species and NH3 species adsorbed on the surface of Mn-Ce/CeAPSO-34.
Less the amount of sulfate species deposited on the surface of Mn-Ce/CeAPSO-34.
DFT suggest the [-Ce-O-Ce-]units were more capable of reacting with NO and NH3.


Abstract

Mn-Ce/CeAPSO-34 was prepared, in which manganese and cerium were supported on the surface through using the Ethanol dispersion method, while cerium was incorporated in the SAPO-34 framework by a one-step hydrothermal method. Based on our previous study, a strong synergistic effect of cerium presented in the framework and the surface was existing in Mn-Ce/CeAPSO-34 catalyst, which showed outstanding SO2 tolerance and H2O resistance in the low-temperature NH3-SCR. In situ FT-IR and DFT calculations were used to investigate the synergistic effects. Based on the characterization results of in situ FT-IR study, it was found that more amount of nitrate species and NH3 species adsorbed on the surface of Mn-Ce/CeAPSO-34, while less the amount of sulfate species deposited during reaction process, which in the presence of SO2. Meanwhile, DFT calculations revealed that Ce site supported on the surface, which neighbored by Ce site in the framework more were capable of reacting with NO and NH3.

Keywords

Mn-Ce/CeAPSO-34 NH3-SCR Synergistic effect SO2 tolerance


Related Article

Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland)

Grzegorz Majewski , Wioletta Rogula-Kozłowska, Katarzyna Rozbicka, Patrycja Rogula-Kopiec, Barbara Mathews, Andrzej Brandyk
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.06.0221
PDF

Pollution Characteristics of Water-Soluble Ions in Aerosols in Urban Area in Beibei of Chongqing

Yanpei Li, Qingju Hao, Tianxue Wen, Dongsheng Ji, Zirui Liu, Yuesi Wang, Xiaoxi Li, Xinhua He, Changsheng Jiang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0500
PDF

Evolution of Key Chemical Components in PM2.5 and Potential Formation Mechanisms of Serious Haze Events in Handan, China

Chengyu Zhang, Litao Litao Wang , Mengyao Qi, Xiao Ma, Le Zhao, Shangping Ji, Yu Wang, Xiaohan Lu, Qing Wang, Ruiguang Xu, Yongliang Ma
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0386
PDF

Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinctions in Seoul

Seung-Myung Park, In-Ho Song, Jong Sung Park, Jun Oh, Kwang Joo Moon, Hea Jung Shin, Jun Young Ahn, Min-Do Lee, Jeonghwan Kim, Gangwoong Lee
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0369
PDF
;