Articles online

Black Carbon and Ozone Variability at the Kathmandu Valley and at the Southern Himalayas: A Comparison between a “Hot Spot” and a Downwind High-Altitude Site

Category: Aerosol and Atmospheric Chemistry

Article In Press
DOI: 10.4209/aaqr.2017.04.0138
PDF | Supplemental material | RIS | BibTeX

Davide Putero 1, Angela Marinoni1, Paolo Bonasoni, Francescopiero Calzolari1, Maheswar Rupakheti2, Paolo Cristofanelli1

  • 1 National Research Council of Italy – Institute of Atmospheric Sciences and Climate, CNR–ISAC, 40129 Bologna, Italy
  • 2 Institute for Advanced Sustainability Studies, IASS, 14467 Potsdam, Germany


Multi-year comparison of BC and O3 at Kathmandu and at the Nepali Himalayas (NCO-P).
BC and O3 at NCO-P are linearly correlated with PBL height over Kathmandu megacity.
22% (16%) of BC (O3) at NCO-P was explained by concurrent variations at Kathmandu.


Several studies have reported the transport of short-lived climate forcers/pollutants (SLCF/P) from the highly polluted areas in southern Asia (e.g., the Indo-Gangetic Plain and the Himalayan foothills) to the Himalayas, with significant implications for the global and regional climate, crop yields, and human health. In this work, we perform a comparison of nearly three years (February 2013–October 2015) of simultaneous black carbon (BC) and surface ozone (O3) measurements at two sites in Nepal, viz., Paknajol (1380 m a.s.l.), in the Kathmandu Valley, and the WMO/GAW global station Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l.), near the base camp of Mt. Everest. The two sites are only 150 km apart and are characterized by different situations: While the Kathmandu Valley is one of the regional urban “hot spots” for concerns related to air pollution, NCO-P is representative of the background conditions of the high Himalayas and the free troposphere. Therefore, the possible role played by emissions occurring in the planetary boundary layer (PBL) of the Kathmandu Valley in influencing the variability in SLCF/P at NCO-P was investigated. BC and O3 concentrations at NCO-P showed a linear correlation with the modeled PBL height over the Kathmandu urban area, providing evidence that the anthropogenic emissions occurring within the Kathmandu PBL could affect the variability in BC and O3 at NCO-P. Furthermore, when introducing an additional constraint into the analysis (viz., back-trajectories), we show that on days when air mass transport between the two measurement sites was observed (10% of the period), at least 22% and 16% of BC and O3 variability at NCO-P can be explained by concurrent variability in SLCF/P over the Kathmandu Valley.


Black carbon Ozone Comparison Planetary boundary layer Himalayas

Related Article

Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland)

Grzegorz Majewski , Wioletta Rogula-Kozłowska, Katarzyna Rozbicka, Patrycja Rogula-Kopiec, Barbara Mathews, Andrzej Brandyk
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.06.0221

Pollution Characteristics of Water-Soluble Ions in Aerosols in Urban Area in Beibei of Chongqing

Yanpei Li, Qingju Hao, Tianxue Wen, Dongsheng Ji, Zirui Liu, Yuesi Wang, Xiaoxi Li, Xinhua He, Changsheng Jiang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0500

Evolution of Key Chemical Components in PM2.5 and Potential Formation Mechanisms of Serious Haze Events in Handan, China

Chengyu Zhang, Litao Litao Wang , Mengyao Qi, Xiao Ma, Le Zhao, Shangping Ji, Yu Wang, Xiaohan Lu, Qing Wang, Ruiguang Xu, Yongliang Ma
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0386

Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinctions in Seoul

Seung-Myung Park, In-Ho Song, Jong Sung Park, Jun Oh, Kwang Joo Moon, Hea Jung Shin, Jun Young Ahn, Min-Do Lee, Jeonghwan Kim, Gangwoong Lee
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0369