OPEN ACCESS

Articles online

Seasonal Characteristics of Black Carbon Aerosol and its Potential Source Regions in Baoji, China

Category: Urban Air Quality

Volume: 18 | Issue: 2 | Pages: 397-406
DOI: 10.4209/aaqr.2017.02.0070
PDF | RIS | BibTeX

Bianhong Zhou1,2, Qiyuan Wang 2, Qi Zhou1, Zhangquan Zhang1, Gehui Wang2, Ni Fang1, Meijuan Li1, Junji Cao2,3

  • 1 Department of Geography and Environmental Engineering, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji University of Arts and Sciences, Baoji 721013, China
  • 2 Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
  • 3 Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China

Highlights

Continuous measurements of BC were made at a mid-sized urban site in Baoji in 2015.
Both seasonal and diurnal variations of BC concentrations were significant..
Different potential source regions of BC for Baoji were found in each season.


Abstract

Continuous measurements of black carbon (BC) aerosol were made at a midsized urban site in Baoji, China, in 2015. The daily average mass concentrations varied from 0.6 to 11.5 µg m–3, with an annual mean value of 2.9 ± 1.7 µg m–3. The monthly variation indicated that the largest loading of BC occurred in January and the smallest in June. The mass concentrations exhibited strong seasonality, with the highest occurring in winter and the lowest in summer. The large BC loadings in winter were attributed to the increased use of fuel for domestic heating and to stagnant meteorological conditions, whereas the low levels in summer were related to the increase in precipitation. BC values exhibited similar bimodal diurnal patterns during the four seasons, with peaks occurring in the morning and evening rush hours and an afternoon trough, which was associated with local anthropogenic activities and meteorological conditions. A potential source contribution function model indicated that the effects of regional transport mostly occurred in spring and winter. The most likely regional sources of BC in Baoji were southern Shaanxi province, northwestern Hubei province, and northern Chongqing during spring, whereas the northeastern Sichuan Basin was the most important source region during winter.

Keywords

Black carbon aerosol Seasonal characterization Diurnal variation Potential source region


Related Article

Observation Analysis on Microphysics Characteristics of Long-lasting Severe Fog and Haze Episode at Urban Canopy Top

Su-Qin Han , Tian-Yi Hao, Min Zhang, Qing Yao, Jing-Le Liu, Zi-Ying Cai, Xiang-Jin Li
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0416
PDF

Meteorological Overview and Signatures of Long-range Transport Processes during the MAPS-Seoul 2015 Campaign

Cheol-Hee Kim , Hyo-Jung Lee, Jeong-Eon Kang, Hyun-Young Jo, Shin-Young Park, Yu-Jin Jo, Jong-Jae Lee, Geum-Hee Yang, Taehyun Park, Tae-Hyung Lee
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0398
PDF

Mass Concentrations and Carbonaceous Compositions of PM0.1, PM2.5, and PM10 at Urban Locations of Hanoi, Vietnam

Nguyen Thi Thu Thuy, Nghiem Trung Dung , Kazuhiko Sekiguchi, Ly Bich Thuy, Nguyen Thi Thu Hien, Ryosuke Yamaguchi
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0502
PDF

Trend of Air Quality in Seoul: Policy and Science

Yong Pyo Kim , Gangwoong Lee
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.03.0081
PDF
;